首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 750 毫秒
1.
杨端生  黄炎  李广利 《应用力学学报》2012,29(2):220-224,244
根据各向异性矩形薄板剪切屈曲横向位移函数的微分方程建立了一般性的解析解。该一般解包括三角函数和双曲线函数组成的解,它能满足四个边为任意边界条件的问题;该一般解还包括代数多项式解,它能满足四个角的边界条件问题。因此,这一解析解可用于精确地求解任意边界的各向异性矩形板的剪切屈曲问题。其中待定常数可由四边和四角的边界条件来确定,由此得出的齐次线性代数方程系数矩阵行列式等于零可以求得各阶临界载荷及其屈型。结合配点法,利用变形的对称和反对称性,以及对称迭层正方形板均可使计算更简单。以四边平夹的对称角铺设复合材料迭层板为例进行了计算和讨论。  相似文献   

2.
采用一般解析解和配点法相结合的方法,求解混合边界各向异性矩形板的弯曲问题.先由弯曲挠度的微分方程求出各种类型的齐次解和特解,然后组成一般解析解,再将板的每个边等分 为很多微小的段,仅对每一微段的中点建立应满足的边界条件,由全部边界条件方程式即可求得全部积分常数.以每边一半边界为平夹、另一半边界为简支或自由的方板为例进行了计算,并与四边均为简支的方板进行了对比,表明理论简单,结果实用.  相似文献   

3.
侯宇  何福保 《力学季刊》1995,16(1):13-19
用三维弹性力学方法研究任意边界条件圆板的轴对称稳定问题,利用H变换和Stockes变换,导出位移函数及其偏导数的一种新型双重极数式,并由数学弹性定理论的基本方程和边界条件建立的特征方程,求得最小临界载荷的精确解,文末以简支圆板为例进行数字计算,结果表明:在弹性失稳范围内,三维弹性力学方法求得的临界载荷略低于经典理论的结果,对于薄板的弹性稳定问题,经典板理论有足够的精度。  相似文献   

4.
王熙  龚育宁 《力学学报》1992,24(1):93-101
本文给出了弹性动力学轴对称问题基本方程的一种理论解。它由满足非齐次边界条件的准静态解和满足齐次边界条件的动态解的叠加构成。在求得准静态解后,代入基本方程,得到动态解所需满足的非齐次方程。由相应的齐次方程的特征值问题,定义了有限Hankel变换。通过这种变换及Laplace变换,求得动态解,从而得到了一个完整的理论解。文中通过对一个实例求解,表明该方法求解过程简便,实用,求解结果精确。  相似文献   

5.
本文对受有边界集中载荷的环形悬臂板提出了一个解析解。求解的方法是采用曲线坐标变换,两次求解相应的调和方程,推导出解的一般形式。然后利用边界条件确定通解中的待定常数。本文的方法完全通用于求解环扇形板任意边界条件下的弯曲问题。文中给出了数字实例。其理论结果与激光散斑法求得的实验值是一致的。  相似文献   

6.
本文从轴对称板壳理论的基本方程出发,通过建立Green函数,导出了轴对称线载荷下解的一般表述式,由此可以求出任意轴对称载荷下的解,然后本文分别讨论了圆板和扁球壳受线载问题的解,文中的结果适用于各种边界条件。  相似文献   

7.
将双模量板等效为两个各向同性小矩形板组成的层合板,假定该层合板的中性面即为两个小矩形板的交界面。根据中性面上应力为零且薄板全厚度上应力的代数和为零,推导了双模量矩形薄板的中性面位置。本文采用严宗达提出的带补充项的双重正弦傅里叶级数通解,该通解可以适用于任意边界条件的矩形薄板且不需要叠加或者重新构造。联立边界条件和控制方程,求得通解中的待定系数并代入到通解中,即可得到任意边界条件下双模量矩形薄板的弯曲解析解。与有限元结果比较,本文结果符合工程精度要求。  相似文献   

8.
结构有限元的修正解   总被引:2,自引:0,他引:2  
本文对结构分析的有限元解提出了一个修正方案,把有限元解看作分段(分片)满足某微分方程的一个齐次解,分段(分片)叠加一满足具有固定边条件的特解作为有限元的修正解,则在任意载荷下,对梁杆系结构可以得到弹性精确解,而对于板系结构的解,其精度也有显著改善.  相似文献   

9.
写出了任意局部荷载作用下各种不同边界条件矩形板的解的表达式.通过梁与板的边界协调分析,求出不同荷载作用下的有梁矩形板解析解,并通过改变其中参数EI与GIt的数值,可以得出局部荷载作用下各种不同边界条件下矩形板的解.  相似文献   

10.
为了探讨平板中横向剪应变对弯曲变形的影响,许多学者对中厚度圆、环板进行过研究,但是除了轴对称问题和少数简单的非轴对称问题求得了精确的解析解以外,一些较为复杂的非轴对称问题大都是借助于有限单元法等数值方法求解的。至于任意横向载荷作用下中厚度圆、环板的非轴对称问题的一般解仍先人问津。本文根据文献[2]所给出的中厚板基本方程,用解析的方法求得了任意横向载荷作  相似文献   

11.
According to the differential equation for transverse displacement function of anisotropic rectangular thin plates in free vibration, a general analytical solution is established. This general solution, composed of the composite solutions of trigonometric function and hyperbolic function, can satisfy the problem of arbitrary boundary conditions along four edges. The algebraic polynomial with double sine series solutions can also satisfy the problem of boundary conditions at four corners. Consequently, this general solution can be used to solve the vibration problem of anisotropic rectangular plates with arbitrary boundaries accurately. The integral constants can be determined by boundary conditions of four edges and four corners. Each natural frequency and vibration mode can be solved by the determinate of coefficient matrix from the homogeneous linear algebraic equations equal to zero. For example, a composite symmetric angle ply laminated plate with four edges clamped has been calculated and discussed.  相似文献   

12.
Symmetric laminated plates used usually are anisotropic plates. Based on the fundamental equation for anisotropic rectangular plates in plane stress problem, a general analytical solution is established accurately by method of stress function. Therefore the general formula of stress and displacement in plane is given. The integral constants in general formula can be determined by boundary conditions. This general solution is composed of solutions made by trigonometric function and hyperbolic function, which can satisfy the problem of arbitrary boundary conditions along four edges, and the algebraic polynomial solutions which can satisfy the problem of boundary conditions at four corners. Consequently this general solution can be used to solve the plane stress problem with arbitrary boundary conditions. For example, a symmetric laminated square plate acted with uniform normal load, tangential load and nonuniform normal load on four edges is calculated and analyzed.  相似文献   

13.
An analytical solution for the cylindrical bending vibrations of linear piezoelectric laminated plates is obtained by extending the Stroh formalism to the generalized plane strain vibrations of piezoelectric materials. The laminated plate consists of homogeneous elastic or piezoelectric laminae of arbitrary thickness and width. Fourier basis functions for the mechanical displacements and electric potential that identically satisfy the equations of motion and the charge equation of electrostatics are used to solve boundary value problems via the superposition principle. The coefficients in the infinite series solution are determined from the boundary conditions at the edges and continuity conditions at the interfaces between laminae, which are satisfied in the sense of Fourier series. The formulation admits different boundary conditions at the edges of the laminated piezoelectric composite plate. Results for laminated elastic plates with either distributed or segmented piezoelectric actuators are presented for different sets of boundary conditions at the edges.  相似文献   

14.
In this paper an accurate solution for the thick rectangular plate with free edges laid onelastic foundation is presented.The superposition method of trigonometric series is used.The method can solve this kind of plates directly and simply.Its results completely satisfythe boundary conditions of the four free edges and nicely agree with the solutions by WangKe-lin and Huang Yi.  相似文献   

15.
The classical formulation of the homogeneous problem of a curved bar loaded only by and end force involves the assumption of an appropriate stress function with four arbitrary constants and the determination of these constants from the boundary conditions. Since there are five boundary conditions, four on the curved edge and one at the end, the solution is only possible because the coefficient matrix of the resulting algebraic equations is singular. This in turn means that certain inhomogeneous problems in which the curved edges are loaded by sinusoidally varying tractions cannot be solved using apparently appropriate stress functions.Additional stress functions which resolve this difficulty are introduced and an example problem is solved, which exhibits qualitatively different behavior from that in more general cases of loading. The problem is then reconsidered as a limiting case of sinusoidal loading of arbitrary wavelength. It is shown that the solution of the latter problem appears to become unbounded as the special case is approached, but that when the end conditions have been correctly satisfied by superposing an appropriate multiple of the end-loaded solution, the limit can be approached regularly and the correct special solution is recovered. The limiting process reveals a general procedure for determining the additional stress functions required for the special case.Similar relationships between homogeneous and inhomogeneous solutions for other common geometries are discussed.  相似文献   

16.
We consider slow steady flows of a conducting fluid at large values of the Hartmann number and small values of the magnetic Reynolds number in an inhomogeneous magnetic field. The general solution is obtained in explicit form for the basic portion (core) of the flow, where the inertia and viscous forces may be neglected. The boundary conditions which this solution must satisfy at the outer edges of the boundary layers which develop at the walls are considered. Possible types of discontinuity surfaces and other singularities in the flow core are examined. An exact solution is obtained for the problem of conducting fluid flow in a tube of arbitrary section in an inhomogeneous magnetic field.The content of this paper is a generalization of some results on flows in a homogeneous magnetic field, obtained in [1–8], to the case of arbitrary flows in an inhomogeneous magnetic field. The author's interest in the problems considered in this study was attracted by a report presented by Professor Shercliff at the Institute of Mechanics, Moscow State University, in May 1967, on the studies of English scientists on conducting fluid flows in a strong uniform magnetic field.  相似文献   

17.
The general form of the solution of the Airy function for the stress distributions that describe the non-linear effect developed from the large deflection of simply supported plates with movable edges are found by superposition of the Airy functions, which satisfy the large deflection condition and the boundary conditions of the edges. Each term of the Airy function consists of a particular solution and a homogeneous one. The particular solution satisfying the large deflection condition is classified into six cases, depending on the combinations of the modal numbers of the comparison functions. The corresponding homogeneous solution is found to make each Airy function satisfy the boundary condition by using the Fourier series method. The solution is applied to the non-linear analysis of the deflection of the simply supported plates with movable edges under transverse loading, and is verified by comparison with other investigation.  相似文献   

18.
In this paper,an analytical method for solving the bending problems of rectangularReissner plate with free edges under arbitrary loads laid on tensionless Winkler foundationsis proposed.By assuming proper form of Fourier series with supplementary terms,whichmeet derivable conditions,for deflection and shear force functions,the basic differentialequations with given boundary conditions can be transformed into a set of simple infinitealgebraic equations.For common Winkler foundations,this set of equations can be solveddirectly and for tensionless Winkler foundations,it is a set of weak nonlinear algebraicequations,the solution of which can be obtained easily by using iterative procedures.  相似文献   

19.
任意厚度层合开口柱壳的温度应力   总被引:1,自引:0,他引:1  
基于层合柱壳混合状态方程和边界条件的弱形式,建立了具有固支边的层合开口柱壳的温度应力混合方程,给出了任意厚度层合开口柱壳在温度荷载和机械荷载共同作用下的解析解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号