首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zheng Fang 《中国物理 B》2022,31(11):118801-118801
SnO2 is widely used as the electron transport layer (ETL) in perovskite solar cells (PSCs) due to its excellent electron mobility, low processing temperature, and low cost. And the most common way of preparing the SnO2 ETL is spin-coating using the corresponding colloid solution. However, the spin-coated SnO2 layer is sometimes not so compact and contains pinholes, weakening the hole blocking capability. Here, a SnO2 thin film prepared through magnetron-sputtering was inserted between ITO and the spin-coated SnO2 acted as an interlayer. This strategy can combine the advantages of efficient electron extraction and hole blocking due to the high compactness of the sputtered film and the excellent electronic property of the spin-coated SnO2. Therefore, the recombination of photo-generated carriers at the interface is significantly reduced. As a result, the semitransparent perovskite solar cells (with a bandgap of 1.73 eV) based on this double-layered SnO2 demonstrate a maximum efficiency of 17.7% (stabilized at 17.04%) with negligible hysteresis. Moreover, the shelf stability of the device is also significantly improved, maintaining 95% of the initial efficiency after 800-hours of aging.  相似文献   

2.
杜相  陈思  林东旭  谢方艳  陈建  谢伟广  刘彭义 《物理学报》2018,67(9):98801-098801
在经典的平面异质结钙钛矿太阳电池中,TiO_2致密层的电子传输性能一直是获得优异光伏性能的决定性因素之一.相较于spriro-OMe TAD等常见的空穴传输材料优异的空穴传输能力,作为电子传输材料的TiO_2的导电性较弱,无法形成良好的电荷匹配.为了解决这个问题,我们使用自组装的十二烷二酸(DDDA)单分子层来修饰TiO_2致密层的表面,TiO_2致密层的导电性能得到大幅提升,并且其能带结构得到优化,促进了电子传输,降低了电子积聚和载流子复合,使得电池的短路电流密度(JSC)从修饰前的20.34 mA·cm~(-2)提升至修饰后的23.28 mA·cm~(-2),进而使得电池在标准测量条件下的光电能量转换效率从14.17%提升至15.92%.同时还发现,通过DDDA修饰TiO_2致密层,所制备的器件的光稳定性显著提升,器件未封装暴露在AM 1.5光强100 mW·cm~(-2)的模拟太阳光下超过720 min,保持初始效率的71%以上且趋于稳定.  相似文献   

3.
Ying Hu 《中国物理 B》2022,31(3):38804-038804
Due to excellent thermal stability and optoelectronic properties, all-inorganic perovskite is one of the promising candidates to solve the thermal decomposition problem of conventional organic—inorganic hybrid perovskite solar cells (PSCs), but the larger voltage loss (Vloss) cannot be ignored, especially CsPbIBr2, which limits the improvement of efficiency. To reduce Vloss, one promising solution is the modification of the energy level alignment between the perovskite layer and adjacent charge transport layer (CTL), which can facilitate charge extraction and reduce carrier recombination rate at the perovskite/CTL interface. Therefore, the key issues of minimum Vloss and high efficiency of CsPbIBr2-based PSCs were studied in terms of the perovskite layer thickness, the effects of band offset of the CTL/perovskite layer, the doping concentration of the CTL, and the electrode work function in this study based on device simulations. The open-circuit voltage (Voc) is increased from 1.37 V to 1.52 V by replacing SnO2 with ZnO as the electron transport layer (ETL) due to more matching conduction band with the CsPbIBr2 layer.  相似文献   

4.
Zi-Xuan Chen 《中国物理 B》2022,31(5):57202-057202
Interfacial charge recombination is a main issue causing the efficiency loss of the perovskite solar cells (PSCs). Here, ferroelectric Ba0.75Sr0.25TiO3 (BST) is introduced as a polarization tunable layer to promote the interfacial charge transfer of the PSCs. The coexistence of ferroelectric polarization and charge carriers in BST is confirmed by density functional theory (DFT) calculations. Experimental characterization demonstrates the polarization reversal and the existence of domain in BST film. The BST film conductivity is tested as 2.98×10-4 S/cm, which is comparable to the TiO2 being used as the electron transporting layer (ETL) in PSCs. The calculations results prove that BST can be introduced into the PSCs and the interfacial charge transfer can be tuned by ferroelectric polarization. Thus, we fabricated the BST-based PSCs with a champion power conversion efficiency (PCE) of 19.05% after poling.  相似文献   

5.
制备Cu掺杂的纳米Sn O2/Ti O2溶胶,采用旋涂法在载玻片上镀膜,经干燥、煅烧制得Cu掺杂的Sn O2/Ti O2薄膜,通过对比实验探讨掺杂比例、条件、复合形式等对结构和性能的影响。采用XRD、SEM、EDS、UVVis等测试手段对样品进行表征,并以甲基橙为探针考察了其光催化降解性能。XRD测试结果显示薄膜的晶型为锐钛矿型,结晶度较高。SEM谱图显示薄膜表面无明显开裂,粒子分布均匀,粒径约为20 nm。EDS测试结果表明薄膜材料中含有Cu元素,谱形一致。UV-Vis吸收光谱表明Cu掺杂以及Sn O2/Ti O2的复合使得在近紫外区的光吸收比纯Ti O2明显增强。光催化实验表明Cu掺杂后使得Sn O2/Ti O2复合薄膜对甲基橙的光催化降解效率进一步提高,Sn O2/Ti O2复合薄膜的光催化活性在10%Cu掺杂时达到最高。  相似文献   

6.
范伟利  杨宗林  张振雲  齐俊杰 《物理学报》2018,67(22):228801-228801
碳基钙钛矿太阳能电池因稳定性高、成本低廉而备受关注,但由于钙钛矿与碳电极之间能级匹配度不高,界面阻力大而导致效率不及金属基钙钛矿太阳能电池.本文制备了碳基无空穴传输层FTO/c-TiO2/m-TiO2/CH3NH3PbI3/Carbon电池结构.通过对介孔二氧化钛层、钙钛矿层厚度进行优化,并对钙钛矿的薄膜形貌及钙钛矿激发电子寿命、可见光吸收度、载流子的提取与分离等进行深度分析,讨论了电池效率提升的内在机理.当介孔氧化钛层和钙钛矿层达到最优厚度时,钙钛矿太阳能电池获得了开路电压(Voc)为0.93 V、电流密度(Jsc)为21.75 mA/cm2、填充因子为55%、光电转化效率达到11.11%.同时对电池进行了稳定性研究,在室温湿度为40%–50%的条件下放置15 d电池性能依旧稳定保持原来的95%,优于金属基钙钛矿太阳能电池,从而为碳电极钙钛矿太阳能电池的商业化发展提供了可能.  相似文献   

7.
The mesoscopic perovskite solar cells (PSCs) based on titanium oxide (TiO2) with a certified 25.2% efficiency are the forefront devices in the PSCs field. Hence, it can conclude the mesoporous titanium oxide (mp-TiO2) is one of the most promising candidates to use as an electron transport layer (ETL) in PSCs. Improving the conductivity of mp-TiO2 can consider as a simple route to motivate the electron extraction ability of this layer and increase the efficiency of PSCs. Herein, rubidium chloride (RbCl) was introduced as an additive source to boost the optoelectronic properties of mp-TiO2 ETL. It was observed through ETL modification with RbCl, the optical transmittance of mp-TiO2 remains constant but increases its electro-conductivity. Results showed that the morphology and crystalline properties of the perovskite layer with a modified ETL substrate is improved. It indicates a perovskite layer with enlarger grains and lower lead iodide (PbI2) surplus. Altogether, ETL modification brings a champion efficiency of 11.10% for hole transport layer (HTL)-free PSCs higher than that of 8.65% for the HTL-free PSCs based on pristine ETL. Besides, Modified PSCs compared to pristine PSCs showed higher stability response as a result of lower grain boundaries in the modified perovskite layer.  相似文献   

8.
Qinxuan Dai 《中国物理 B》2022,31(3):37303-037303
As the main distribution place of deep-level defects and the entrance of water, the interface is critical to determining both the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Suitable interface design can dramatically passivate interface defects and optimize energy level alignment for suppressing the nonradiative recombination and effectively extracting the photogenerated carriers towards higher PCE. Meanwhile, a proper interface design can also block the interface diffusion of ions for high operational stability. Therefore, interface modification is of great significance to make the PSCs more efficient and stable. Upon optimized material choices, the three-dimensional halide perovskite graded junction layer, low-dimensional halide perovskite interface layer and organic salt passivation layer have been constructed on perovskite films for superior PSCs, yet a systematic review of them is missing. Thus, a guide and summary of recent advances in modulating the perovskite films interface is necessary for the further development of more efficient interface modification.  相似文献   

9.
蒋昊天  杨扬  汪粲星  朱辰  马向阳  杨德仁 《物理学报》2014,63(17):177302-177302
通过在重掺硼硅(p+-Si)衬底上溅射SnO2薄膜并在O2气氛下800℃热处理形成SnO2/p+-Si异质结.基于该异质结的器件可在低电压(电流)驱动下电致发光.进一步地,通过在SnO2薄膜上增加TiO2盖层,使器件的电致发光获得显著增强.这是由于TiO2盖层的引入,一方面使SnO2薄膜更加致密,减少了非辐射复合中心;另一方面TiO2较大的折射率和合适的厚度使SnO2薄膜电致发光的出光效率得到提高.  相似文献   

10.
王昭  范树兴  唐伟 《中国物理 B》2022,31(2):28101-028101
SnO2/Co3O4nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO2/Co3O4hetero-nanofibers are characterized by using field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),x-ray diffraction(XRD),and x-ray photoelectron spectrometer(XPS).The analyses of SnO2/Co3O4NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber,which is related to the homopolar electrospinning and the crystallization during sintering.As a typical n-type semiconductor,Sn O2has the disadvantages of high optimal operating temperature and poor reproducibility.Comparing with Sn O2,the optimal operating temperature of SnO2/Co3O4NFs is reduced from 350℃to 250℃,which may be related to the catalysis of Co2O2.The response of SnO2/Co3O4to 100-ppm ethanol at 250℃is 50.9,9 times higher than that of pure Sn O2,which may be attributed to the p–n heterojunction between the n-type Sn O2crystalline grain and the p-type Co2O2crystalline grain.The nanoscale p–n heterojunction promotes the electron migration and forms an interface barrier.The synergy effects between Sn O2and Co2O2,the crystalline grain p–n heterojunction,the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.  相似文献   

11.
Xiao-Ping Xie 《中国物理 B》2022,31(10):108801-108801
Perovskite/silicon (Si) tandem solar cells have been recognized as the next-generation photovoltaic technology with efficiency over 30% and low cost. However, the intrinsic instability of traditional three-dimensional (3D) hybrid perovskite seriously hinders the lifetimes of tandem devices. In this work, the quasi-two-dimensional (2D) (BA)2(MA)n-1PbnI3n+1 (n=1, 2, 3, 4, 5) (where MA denotes methylammonium and BA represents butylammonium), with senior stability and wider bandgap, are first used as an absorber of semitransparent top perovskite solar cells (PSCs) to construct a four-terminal (4T) tandem devices with a bottom Si-heterojunction cell. The device model is established by Silvaco Atlas based on experimental parameters. Simulation results show that in the optimized tandem device, the top cell (n=4) obtains a power conversion efficiency (PCE) of 17.39% and the Si bottom cell shows a PCE of 11.44%, thus an overall PCE of 28.83%. Furthermore, by introducing a 90-nm lithium fluoride (LiF) anti-reflection layer to reduce the surface reflection loss, the current density (Jsc) of the top cell is enhanced from 15.56 mA/cm2 to 17.09 mA/cm2, the corresponding PCE reaches 19.05%, and the tandem PCE increases to 30.58%. Simultaneously, in the cases of n=3, 4, and 5, all the tandem PCEs exceed the limiting theoretical efficiency of Si cells. Therefore, the 4T quasi-2D perovskite/Si devices provide a more cost-effective tandem strategy and long-term stability solutions.  相似文献   

12.
近年来,钙钛矿太阳电池(PSCs)得到了迅猛发展,而无机空穴传输材料(IHTMs)的使用可进一步降低电池的成本,提高电池的稳定性.本文通过电子束蒸发制备了Cu_2O薄膜,研究了空气中退火温度及时间对薄膜组成、结构及光电性能的影响,并构筑了p-i-n反型平面异质结钙钛矿太阳电池.研究发现:由于热解作用,直接通过电子束蒸发制备的薄膜为Cu_2O和Cu的混合物;而在空气中经过退火后,由于氧化作用,随着退火温度的升高,薄膜的组分由混合物转变为纯的Cu_2O,再转变成纯的CuO.通过控制退火温度制备的Cu_2O薄膜的光学带隙约为2.5 eV,载流子迁移率约为30 cm~2·V~(-1)·s~(-1).应用于PSCs,薄膜的最佳厚度为40 nm,但电池性能低于PEDOT:PSS基的PSCs.这主要是由于钙钛矿前驱液在Cu_2O薄膜的润湿性较差,吸收层中有大量微孔洞存在,致使漏电流增强,电池的性能降低.然而,当采用Cu_2O/PEDOT:PSS双HTMs设计时,由于PEDOT:PSS对Cu_2O具有较强的腐蚀作用,使电池性能恶化.  相似文献   

13.
Despite the advanced efficiency of perovskite solar cells(PSCs),electron transportation is still a pending issue.Here the polymer polyvinylpyrrolidone(PVP)is used to enhance the electron injection,which is thanks to the passivation of the defects at the interface between the ZnO electron transporting layer(ETL)and the perovskite.The application of the PVP layer inhibits the device degradation,and 80%of the primary efficiency is kept after 30 d storage in air condition.Additionally,the efficiency of the device is further enhanced by improving the conductivity and crystallinity of the ZnO ETL via Magnesium(Mg)doping in the ZnO nanorods(ZnO NRs).Moreover,the preparation parameters of the ZnO NRs are optimized.By employing the high-crystallinity ZnO ETL and the PVP layer,the power conversion efficiency(PCE)of the champion device is increased from 16.29%to 19.63%.These results demonstrate the advantages of combining mesoscale manipulation with interface modification and doping together.  相似文献   

14.
采用旋涂法将溶胶-凝胶法制备的Ni/Sn O2凝胶在玻璃基底上镀膜,得到了Ni/Sn O2复合薄膜,探讨了镍掺杂量、煅烧温度对薄膜结构和形貌的影响。通过X射线衍射、红外光谱、扫描电子显微镜等测试手段对Ni/Sn O2复合膜的结构和形貌进行表征。结果显示,500℃下煅烧的薄膜样品的结晶度较高,粒径小,颗粒分布均匀。用紫外-可见分光光度计和四探针电阻仪对其进行光学、电学性能测试,结果显示:适量的Ni掺杂可以提高Sn O2薄膜在近紫外光区的吸收,Ni/Sn O2薄膜在近紫外光区的吸收随着Ni2+掺杂摩尔分数从5%增加到10%而逐渐减小。当Ni2+掺杂摩尔分数为6%时,Ni/Sn O2复合薄膜的导电性能最好。  相似文献   

15.
Fei Qi 《中国物理 B》2021,30(10):108801-108801
This report presents two non-perihperally octaalkyl-substituted nickel phthalocyanines (NiPcs), namely, NiEt2Pc and NiPr2Pc, for use as dopant-free hole transport materials in perovskite solar cells (PSCs). The length extension of the alkyl chains from ethyl to propyl significantly tunes the NiPcs' energy levels, thus reducing charge carrier recombination at the perovskite/hole transport layer (HTL) interface and leading to higher open-circuit voltage (VOC) and short-circuit current density (JSC) observed for the NiPr2Pc-based PSC. And higher charge carrier mobility, higher thin film crystallinity, and lower surface roughness of the NiPr2Pc HTL compared with that of the NiEt2Pc one also lead to higher JSC and fill factor (FF) observed for the NiPr2Pc-based device. Consequently, the NiPr2Pc-based PSC exhibits a higher power conversion efficiency (PCE) of 14.07% than that of the NiEt2Pc-based device (8.63%).  相似文献   

16.
李琦  章勇 《物理学报》2018,67(6):67201-067201
采用旋涂Al_2O_3前驱体溶液和低温退火的方法在活性层上形成Al_2O_3薄膜,并与MoO_3结合形成Al_2O_3/MoO_3复合阳极缓冲层,制备了以聚3-己基噻吩:[6.6]-苯基-C_(61)-丁酸甲酯(P3HT:PC_(61)BM)为活性层的倒置聚合物太阳能电池,并通过改变Al_2O_3前驱体溶液的浓度来分析复合阳极缓冲层对器件性能的影响.结果发现,Al_2O_3/MoO_3复合阳极缓冲层能有效调控倒置聚合物太阳能电池的光电性能及其稳定性.当Al_2O_3前驱体溶液的浓度为0.15%时,器件光伏性能达到最优值,与MoO_3单缓冲层的器件相比,光电转换效率(PCE)由3.85%提高到4.64%;经过80天老化测试后,具有复合阳极缓冲层的器件PCE保留为初始值的76%,而单缓冲层的器件PCE已经下降到50%以下.器件性能得到改善的原因是Al_2O_3/MoO_3复合阳极缓冲层增强了倒置太阳能电池器件阳极对空穴的收集能力,同时钝化了器件活性层,从而提升了太阳能电池器件的光伏性能及其稳定性.  相似文献   

17.
First-principles calculations based on density functional theory and the pseudopotential method have been used to investigate the energetics of H2O adsorption on the (110) surface of TiO2 and SnO2. Full relaxation of all atomic positions is performed on slab systems with periodic boundary conditions, and cases of full and half coverage are studied. Both molecular and dissociative (H2O→OH+H) adsorption are treated, and allowance is made for relaxation of the adsorbed species to unsymmetrica configurations. It is found that for both TiO2 and SnO2 an unsymmetrical dissociated configuration is the most stable. The symmetrical molecularly adsorbed configuration is unstable with respect to lowering of symmetry, and is separated from the fully dissociated configuration by at most a very small energy barrier. The calculated dissociative adsorption energies for TiO2 and SnO2 are in reasonable agreement with the results of thermal desorption experiments. Calculated total and local electronic densities of states for dissociatively and molecularly adsorbed configurations are presented, and their relation with experimental UPS spectra is discussed.  相似文献   

18.
陈亚琦  许华慨  唐东升  余芳  雷乐  欧阳钢 《物理学报》2018,67(24):246801-246801
为探究常态环境下氧空位对单根SnO_2纳米线电输运性能的影响,采用化学气相沉积法合成了SnO_2纳米线,通过光刻微加工技术构筑了Au/单根SnO_2纳米线/Au二端纳米器件.将单根SnO_2纳米器件进行氢化处理,测试其在空气与真空中的伏安特性曲线,发现单根SnO_2纳米线在空气和真空环境中呈现异常不同的电输运特性:在空气中,加偏压注入电子会使通过纳米器件的电流减小,Au电极与SnO_2纳米线之间的接触势垒增大;抽真空后,在偏压的影响下,通过纳米器件的电流增大,Au/SnO_2交界面的接触方式由肖特基接触转变成欧姆接触.实验分析表明,影响单根SnO_2纳米线电输运特性行为的因素与纳米线表面的氧原子吸附与脱吸附所引起的氧空位浓度的变化有关.为进一步分析氧空位浓度变化的作用,利用第一性原理计算方法计算了氧空位浓度对SnO_2纳米线电输运性能的影响,通过分析体系的能带结构、态密度及Au/SnO_2接触界面的I-V曲线和透射谱,发现随着氧空位浓度的增大,SnO_2纳米线的带隙变小.同时,氧空位缺陷使Au/SnO_2接触界面处电子透射率增大,体系电输运能力变强.该研究结果将为集成纳米功能器件的设计提供一种新思路.  相似文献   

19.
《Current Applied Physics》2018,18(10):1095-1100
A cost-effective and efficient organic semiconductor pentacene was developed as a hole transport layer (HTL) material to replace classical PEDOT:PSS for planar perovskite solar cells (PSCs). As expected, the pentacene based device exhibits power conversion efficiency (PCE) of 15.90% (Jsc of 19.44 mA/cm2, Voc of 1.07 V, and FF of 77%), comparable to the PEDOT:PSS based device (PCE of 15.65%, Jsc of 18.78 mA/cm2, Voc of 1.07 V, and FF of 77%) under the same experimental conditions. The excellent performance of vacuum deposited pentacene is mainly attributed to the high efficient charge extraction and transfer in device due to the high-quality perovskite film grown on the top of pentacene substrate and a favorable energy-level alignment together with a desired downward band bending formed at the perovskite/pentacene interface. Our research has confirmed that pentacene could be served as a promising HTL material to achieve effective and potentially economical planar type PSCs.  相似文献   

20.
We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO_2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO_2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO_2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO_2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO_2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO_2 thin film showed slightly higher power conversion efficiency and great J_(sc) of 10.7 mA/cm~2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO_2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO_2 thin film was better in all wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号