首页 | 本学科首页   官方微博 | 高级检索  
     检索      

十二烷二酸修饰TiO_2电子传输层改善钙钛矿太阳电池的电流特性
引用本文:杜相,陈思,林东旭,谢方艳,陈建,谢伟广,刘彭义.十二烷二酸修饰TiO_2电子传输层改善钙钛矿太阳电池的电流特性[J].物理学报,2018,67(9):98801-098801.
作者姓名:杜相  陈思  林东旭  谢方艳  陈建  谢伟广  刘彭义
作者单位:1.暨南大学物理学系, 广州市真空薄膜技术与新能源材料重点实验室, 思源实验室, 广州 510632;2.中山大学测试中心, 广州 510275
基金项目:国家自然科学基金(批准号:61674070,11574119,21576301,51303217,51373205)和广州市科技计划(批准号:201605030008)资助的课题.
摘    要:在经典的平面异质结钙钛矿太阳电池中,TiO_2致密层的电子传输性能一直是获得优异光伏性能的决定性因素之一.相较于spriro-OMe TAD等常见的空穴传输材料优异的空穴传输能力,作为电子传输材料的TiO_2的导电性较弱,无法形成良好的电荷匹配.为了解决这个问题,我们使用自组装的十二烷二酸(DDDA)单分子层来修饰TiO_2致密层的表面,TiO_2致密层的导电性能得到大幅提升,并且其能带结构得到优化,促进了电子传输,降低了电子积聚和载流子复合,使得电池的短路电流密度(JSC)从修饰前的20.34 mA·cm~(-2)提升至修饰后的23.28 mA·cm~(-2),进而使得电池在标准测量条件下的光电能量转换效率从14.17%提升至15.92%.同时还发现,通过DDDA修饰TiO_2致密层,所制备的器件的光稳定性显著提升,器件未封装暴露在AM 1.5光强100 mW·cm~(-2)的模拟太阳光下超过720 min,保持初始效率的71%以上且趋于稳定.

关 键 词:钙钛矿材料  太阳电池  平面异质结  电子传输
收稿时间:2017-12-31

Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer
Du Xiang,Chen Si,Lin Dong-Xu,Xie Fang-Yan,Chen Jian,Xie Wei-Guang,Liu Peng-Yi.Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer[J].Acta Physica Sinica,2018,67(9):98801-098801.
Authors:Du Xiang  Chen Si  Lin Dong-Xu  Xie Fang-Yan  Chen Jian  Xie Wei-Guang  Liu Peng-Yi
Institution:1.Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China;2.Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
Abstract:In the classical planar heterojunction perovskite solar cells (PSCs), the electron conducting TiO2 layer shows lower conductivity than the hole transporting materials such as spiro-OMeTAD, which becomes one of the key problems in improving the power conversion efficiency (PCE) of PSCs. In this study, the surface of compact TiO2 layer is modified by a thin self-assembled dodecanedioic acid (DDDA) molecular layer. The TiO2 substrates are immersed into the DDDA solution for 0.5, 2.5, 4.5, 22 h, respectively. It is found that the PCE of PSCs is improved when using the DDDA modified TiO2, showing optimized PCE of 15.35%±0.75% under AM 1.5G illumination at 100 mW·cm-2 after 4.5 h modification. The short current density (JSC) of the best device is improved from 20.34 mA· cm-2 to 23.28 mA· cm-2, with the PCE increasing from 14.17% to 15.92%. And it is found that the hysteresis of the PSC is also reduced remarkably with hysteresis index decreasing from 0.4288 to 0.2430. In the meantime, the device with DDDA modification shows a significant improvement in light stability, keeping 71% of its initial PCE value after 720 min exposure under AM 1.5G illumination at 100 mW· cm-2 without encapsulation. As a contrast, the device without DDDA modification keeps 59% of its initial PCE value under the same condition. To reveal the mechanism, we investigate the surface energy level change using ultraviolet photoemission spectroscopy. It is found that after DDDA modification, the valence-band maximum energy (EVBM) of TiO2 decreases from -7.25 eV to -7.32 eV, and the conduction-band minimum energy (ECBM) of TiO2 from -4.05 eV to -4.12 eV. The shifting of energy level optimizes the energy level alignment at the interface between the TiO2 and perovskite. It promotes the transport of electrons from perovskite layer to compact TiO2 layer and obstructs the transport of holes from perovskite layer to compact TiO2 layer more effectively. In addition, the decrease of ECBM implies the increase of conductivity of TiO2. We further design a series of electrical experiments, and confirm that the modification improves the conductivity of TiO2 obviously with both contact resistance and thin-film resistance decreasing. In summary, our results indicate the enormous potential of the compact TiO2 layer with a thin self-assembled DDDA molecular layer modification to construct efficient and stable planar heterojunction PSCs for practical applications.
Keywords:perovskite material  solar cells  planar heterojunction  electron transport
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号