首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
建立了pH依赖型脂肪酸辅助的分散液-液微萃取与高效液相色谱联用测定水中菲、芘、苊3种多环芳烃(PAHs)的新方法。对影响前处理方法的因素进行了考察,在55μL正庚酸、50μL 28%(质量分数)浓氨水、500μL 98%(质量分数)浓硫酸、离心时间3 min的萃取条件下,采用Diamonsil C_(18)柱(150 mm×4.6 mm,5μm)分离,乙腈-水等度洗脱的方式测定了自来水、井水和海水样品中的3种多环芳烃。结果显示,3种多环芳烃在20~500μg/L范围内具有良好的线性关系,相关系数不小于0.999 3,3种目标化合物的检出限为9.18~13.11μg/L。实际样品中3种多环芳烃在3个浓度水平的加标回收率为87.9%~110%,RSD均不大于3.0%。该方法将脂肪酸作为萃取剂,与HPLC联用实现了多环芳烃的富集与检测,为环境水样中多环芳烃的检测提供了新的前处理方法。方法简便、快速,实验过程仅需6 min即可实现水样中多环芳烃的定量测定。  相似文献   

2.
Zhu B  Chen H  Li S 《色谱》2012,30(2):201-206
以密度小于水的轻质溶剂为萃取剂,建立了无需离心步骤的溶剂去乳化分散液-液微萃取-气相色谱(SD-DLLME-GC)测定水样中多环芳烃的新方法。传统分散液-液微萃取技术一般采用密度大于水的有机溶剂为萃取剂,并需要通过离心步骤促进分相。而本方法以密度比水小的轻质溶剂甲苯为萃取剂,将其与丙酮(分散剂)混合并快速注入水样,获得雾化体系;然后注入乙腈作为去乳化剂,破坏该雾化体系,无需离心,溶液立即澄清、分相;取上层有机相(甲苯)进行GC分析。考察了萃取剂、分散剂、去乳化剂的种类及其体积等因素对萃取率的影响。以40 μL甲苯为萃取剂,500 μL丙酮为分散剂,800 μL乙腈为去乳化剂,方法在20~500 μg/L范围内呈现出良好的线性(r2=0.9942~0.9999),多环芳烃的检出限(S/N=3)为0.52~5.11 μg/L。用所建立的方法平行测定5份质量浓度为40 μg/L的多环芳烃标准水样,其含量的相对标准偏差为2.2%~13.6%。本法已成功用于实际水样中多环芳烃的分析,并测得其加标回收率为80.2%~115.1%。  相似文献   

3.
建立了漩涡辅助分散液液微萃取(VAEDLLME)结合气相色谱测定环境水样中12种多环芳烃的方法。对萃取剂种类和体积、漩涡时间以及盐浓度的影响等参数进行优化。实验结果表明,方法线性范围为0.1~5.0μg/L,相关系数r≥0.9851,检出限为0.001~0.01μg/L,加标回收率为95.0%~124.4%,相对标准偏差(RSD)为1.4%~27%。方法适用于环境水样中12种多环芳烃的分析检测。  相似文献   

4.
张建华  黄颖  陈晓秋  陈金花  李辉  陈国南 《色谱》2009,27(6):799-803
建立了简便、快速、有效的分散液-液微萃取-高效液相色谱-荧光检测(DLLME-HPLC-FLD)测定环境水样中15种多环芳烃(PAHs)的方法。重点探讨了萃取剂的种类和用量、分散剂的种类和用量以及萃取时间等对PAHs萃取效率的影响。在优化的条件下,评价了方法的可靠性。15种PAHs在0.01~10 μg/L范围内呈良好的线性关系,相关系数r均不小于0.9913,峰面积的相对标准偏差(RSD)在2.3%~4.7%之间(n=6)。在优化条件下,富集因子和萃取回收率良好,分别为674~1032和67.4%~103.2%,15种PAHs的检出限(S/N=3)在0.0003~0.002 μg/L之间。建立的方法应用于敖江水样中PAHs的检测,平均加标回收率在79.5%~92.3%之间,RSD在4.3%~6.7%范围内(n=5)。该方法适用于环境水样中痕量PAHs的分析。  相似文献   

5.
熊力  王金成 《分析测试学报》2019,38(11):1335-1339
建立了自来水中6种氯代多环芳烃和15种多环芳烃的凝固漂浮有机液滴-分散液液微萃取高效液相色谱分析方法,并探讨了萃取剂种类和用量、分散剂种类和用量、氯化钠含量及涡旋振荡时间等因素对萃取效率的影响。优化后的萃取实验条件为:10μL十二醇为萃取溶剂,500μL甲醇为分散溶剂,6%NaCl,涡旋振荡时间2 min。目标化合物经多环芳烃专用柱(SUPELCOSILTMLC-PAH,150 mm×4.6 mm,5μm)分离后,外标法定量。结果表明,21种目标化合物在一定质量浓度范围内线性良好,相关系数均不低于0.999;在低、中、高3个加标水平下的回收率为70.6%~98.7%,相对标准偏差(RSD)为2.0%~10%;方法的检出限(LOD,S/N=3)为0.000 7~0.009μg/L,定量下限(LOQ,S/N=10)为0.002 2~0.028μg/L。可用于自来水中氯代多环芳烃和多环芳烃的分析检测。  相似文献   

6.
建立了保湿护肤系列化妆品中16种多环芳烃的气相色谱-质谱测定法。对于水剂样品,采用环己烷提取、浓缩等简单前处理;对于膏霜剂样品,采用乙腈+丙酮(8+2,V/V)涡旋提取样品中的待测物,提取液经冷冻去脂、液液萃取净化(氨水-环己烷、水-环己烷),气相色谱-质谱法测定。16种多环芳烃在1~50μg/L均与对应峰面积呈良好线性关系。添加量在1~50μg/kg时,平均回收率(n=6)为78.1%~103.7%,相对标准偏差为2.4%~7.1%,方法检测限为1~10μg/kg。该法可用于化妆品中16种多环芳烃的测定。  相似文献   

7.
分散液液微萃取-气相色谱法测定水样中甲基环硅氧烷   总被引:1,自引:0,他引:1  
将分散液液微萃取与气相色谱法技术相结合,建立了测定水样中3种甲基环硅氧烷残留的方法.重点探讨了萃取剂的种类和用量、分散剂的种类和用量、萃取时间及盐浓度等对样品萃取效率的影响.结果表明在优化条件下,待测物在5~100μg/L范围内线性良好(r>0.99),检出限在2~4μg/L之间,富集倍数可达165~170倍,相对标准...  相似文献   

8.
建立了惰性气体-表面活性剂辅助液液萃取与气相色谱联用测定水中多环芳烃的方法。向添加有适量表面活性剂的250mL水样中导入惰性气体,气泡将包裹待测物的胶束带到水样上层1mL有机相中,并在其中浓缩,将上层有机相经过无水硫酸钠干燥后定容至1mL,采用气相色谱-火焰离子化检测法(GC-FID)测定。考察了不同表面活性剂、有机溶剂、氮吹时间和表面活性剂浓度对萃取效率的影响。建立的方法具有有机溶剂使用量少、可自动化操作和批量处理样品等特点。工作曲线具有良好的线性关系,相关系数>0.997,以FID为检测器,富集倍数为250时,定量限为10~20μg/L,检出限为1~5μg/L,重复测定的相对标准偏差<7%(n=5)。采用建立的方法对实际水样进行测定,加标回收率为86%~108%。  相似文献   

9.
《分析试验室》2021,40(9):1035-1038
建立了基于分散液液微萃取(DLLME)-数字成像比色(DIC)法测定水样中Fe的方法。在乙酸-乙酸钠缓冲溶液中,Fe(Ⅲ)被盐酸羟胺还原成Fe(Ⅱ)后与邻菲罗啉作用生成橙红色络合物。以离子液体[C6M IM][PF6]为萃取剂,乙腈为分散剂,采用涡旋辅助的分散液液微萃取方法对该络合物进行萃取和富集后,直接通过手机比色装置对Fe进行测定。优化了手机比色装置参数和分散液液微萃取的萃取剂种类及用量、分散剂种类及用量等条件。结果表明,在最佳条件下,方法的线性范围为24~200μg/L,相关系数(r~2)为0.9973,检出限为3μg/L,加标回收率为90.0%~108.0%,相对标准偏差(RSD)为0.8%~1.8%。该方法可用于测定环境水样中痕量Fe。  相似文献   

10.
采用液液萃取-气相色谱-质谱法测定墨水中的16种多环芳烃。样品经二氯甲烷液液萃取后,使用固相萃取技术进行纯化。在气相色谱分离中用DB-5MS色谱柱为固定相,在质谱分析中采用选择离子监测模式。16种多环芳烃在一定的质量浓度范围内与其峰面积呈线性关系,方法的检出限(3S/N)在5.0~30μg·kg-1之间。以空白样品为基体进行加标回收试验,所得回收率在60.6%~116%之间,测定值的相对标准偏差(n=6)在1.5%~5.3%之间。  相似文献   

11.
袁继委  王金成  徐威力  徐方曦  卢宪波 《色谱》2020,38(11):1308-1315
多环芳烃和酞酸酯是国际公认的优控污染物,因此准确快速地测定水中多环芳烃和酞酸酯非常重要。凝固漂浮有机液滴-分散液液微萃取(DLLME-SFO)是一种简便、快速、环境友好、灵敏度高的样品前处理技术。采用DLLME-SFO同时测定地表水中多环芳烃和酞酸酯的分析方法鲜有报道。该文采用凝固漂浮有机液滴-分散液液微萃取富集技术,结合高效液相色谱紫外/荧光法,建立了同时测定地表水中16种多环芳烃和6种酞酸酯的分析方法。考察优化了影响萃取效率的主要因素,包括萃取剂的种类和用量、分散剂的种类和用量、萃取时间和离子强度等。优化后的萃取实验条件为:5.0 mL水样,10 μL十二醇为萃取溶剂,500 μL甲醇为分散溶剂,涡旋振荡时间2 min,氯化钠用量0.2 g。目标化合物经多环芳烃专用色谱柱(SUPELCOSILTM LC-PAH,150 mm×4.6 mm,5 μm)结合乙腈-水梯度洗脱分离,16种多环芳烃除苊烯外采用荧光检测,苊烯和6种酞酸酯采用紫外检测,外标法定量。结果表明,22种目标化合物的基质加标回收率为60.2%~113.5%,相对标准偏差为1.9%~14.3%;多环芳烃和酞酸酯的检出限分别为0.002~0.07 μg/L和0.2~2.2 μg/L;多环芳烃和酞酸酯的定量限分别为0.006~0.23 μg/L和0.8~7.4 μg/L。该方法简便、快速,环境友好,灵敏度高,可用于地表水中多环芳烃和酞酸酯的快速分析检测。  相似文献   

12.
This article describes the preconcentration of methyl methacrylate in produced water by the dispersive liquid–liquid microextraction using extraction solvents lighter than water followed by gas chromatography. In the present experiments, 0.4 mL dispersive solvent (ethanol) containing 15.0 μL extraction solvent (toluene) was rapidly injected into the samples and followed by centrifuging and direct injection into the gas chromatograph equipped with flame ionization detector. The parameters affecting the extraction efficiency were evaluated and optimized including toluene (as extraction solvent), ethanol (as dispersive solvent), 15 μL and 0.4 mL (as the volume of extraction and dispersive solvents, respectively), pH 7, 20% ionic strength, and extraction's temperature and time of 20°C and 10 min, respectively. Under the optimum conditions, the figures of merits were determined to be LOD = 10 μg/L, dynamic range = 20–180 μg/L, RSD = 11% (n = 6). The maximum recovery under the optimized condition was determined to be 79.4%.  相似文献   

13.
何静  叶曦雯  汤志旭  牛增元  罗忻  邹立 《色谱》2020,38(6):679-686
建立了悬浮固化-分散液液微萃取结合液相色谱-串联质谱测定纺织废水中5种痕量磷系阻燃剂的方法。通过对萃取过程中萃取剂、分散剂的种类与体积、盐浓度、溶液pH值等对萃取效率的影响因素优化,确立了最佳萃取条件。采用了密度小于水的十一烷醇(400 μL)为萃取剂,甲醇(300 μL)为分散剂,控制溶液pH值在6~9之间,NaCl添加量为2 g,萃取时间为涡旋2 min。在优化的萃取条件下,该方法在2~100 μg/L均有良好的线性关系,相关系数大于0.995,除二(2,3-二溴丙基)磷酸酯(BIS)的检出限为5 μg/L外,三(2-氯乙基)磷酸酯(TCEP)、三(1,3-二氯-异丙基)磷酸酯(TDCP)、三(1-氮丙啶基)氧化膦(TEPA)和三(2,3-二溴丙基)磷酸酯(TRIS)的检出限均为2 μg/L。后整理、染色和印花等实际废水样品加标试验表明,方法的平均回收率为71.6%~114.5%,RSD为2.7%~11.2%(n=6)。对11个样品进行检测,其中3个废水样品检出TCEP与TDCP化合物,含量为2.6~3.4 μg/L。本方法简单,快速,灵敏度好且环保绿色,能够对纺织废水中的5种痕量磷系阻燃剂进行准确的定性与定量检测。  相似文献   

14.
建立了悬浮固化分散液液微萃取(SFO-DLLME)结合高效液相色谱(HPLC)快速测定水样中6种邻苯二甲酸酯(PAEs)的分析方法。通过对影响萃取效率因素的优化,确定了最佳萃取条件:十二烷醇萃取剂20 μL、萃取温度60℃、离子强度20 g/L、萃取时间1 min。6种PAEs在2~2000 μg/L范围内呈良好的线性关系,相关系数(r)为0.9995~0.9999,检出限(S/N=3)为0.3~0.6 μg/L。对自来水、湖水、江水、污水、海水、市售塑料瓶装纯净水和矿泉水进行测定,能检测到部分PAEs。对加标水样进行回收率试验(10、100和1000 μg/L),6种PAEs的回收率为84.9%~94.5%,相对标准偏差为4.1%~6.8%(n=5)。该法环保、简单,可用于实际水样中6种PAEs的检测分析。  相似文献   

15.
The coupling of solid-phase extraction (SPE) using bamboo charcoal (BC) as an adsorbent with a monolithic column-high performance liquid chromatography (MC-HPLC) method was developed for the high-efficiency enrichment and rapid determination of 16 polycyclic aromatic hydrocarbons (PAHs) in water. Key influence factors, such as the type and the volume of the elution solvent, and the flow rate and the volume of the sample loading, were optimized to obtain a high SPE recovery and extraction efficiency. BC as an SPE adsorbent presented a high extraction efficiency due to its large specific surface area and high adsorption capacity; MC as an HPLC column accelerated the separation within 8 min because of its high porosity, fast mass transfer, and low-pressure resistance. The calibration curves for the PAHs extracted were linear in the range of 0.2-15 μg/L, with the correlation coefficients (r(2)) between 0.9970-0.9999. This method attained good precisions (relative standard deviation, RSD) from 3.5 to 10.9% for the standard PAHs I aqueous solutions at 5 μg/L; the method recoveries ranged in 52.6-121.6% for real spiked river water samples with 0.4 and 4 μg/L. The limits of detection (LODs, S/N = 3) of the method were determined from 11 and 87 ng/L. The developed method was demonstrated to be applicable for the rapid and sensitive determination of 16 PAHs in real environmental water samples.  相似文献   

16.
A sensitive method for the extraction and determination of polycyclic aromatic hydrocarbons (PAHs) using alcoholic-assisted dispersive liquid-liquid microextraction (AA-DLLME) and HPLC was developed. The extraction procedure was based on alcoholic solvents for both extraction and dispersive solvents. The effective parameters (type and volume of extraction and dispersive solvents, amount of salt and stirring time) on the extraction recovery were studied and optimized utilizing factorial design (FD) and central composite design (CCD). The best recovery was achieved by FD using 2-ethyl-1-hexanol as the extraction solvent and methanol as the dispersive solvent. The results showed that volume of dispersive solvent and stirring time had no effect on the recovery of PAHs. The optimized conditions were 145 μL of 2-ethyl-1-hexanol as the extraction solvent and 4.2% w/v of salt (NaCl) in sample solution. The enrichment factors of PAHs were in the range of 310-325 with limits of detection of 0.002-0.8 ng/mL. The linearity was 0.01-800 ng/mL for different PAHs. The relative standard deviation (RSD) for intra- and inter-day of extraction of PAHs were in the range of 1.7-7.0 and 5.6-7.3, respectively, for five measurements. The method was also successfully applied for the determination of PAHs in environmental water samples.  相似文献   

17.
A method based on dispersive liquid–liquid microextraction coupled with GC/MS was developed for quantitative analysis of the major organic pollutants listed in the United States Environmental Protection Agency method 8270 and the 15 European‐priority polycyclic aromatic hydrocarbons in coking wastewater. The major parameters such as extraction solvent, dispersive solvent, solution pH, and extraction time were systematically optimized. The optimum extraction conditions were found to be: 15 μL mixture of 2:1 v/v carbon tetrachloride and chlorobenzene as the extraction solvent, 0.75 mL ACN as the dispersive solvent, solution pH of 8, and extraction time of 2 min. For the major pollutants listed in the United States Environmental Protection Agency 8270, the linear ranges were 0.1 to 100 mg/L, the enrichment factors ranged from 452 to 685, and the relative recoveries ranged from 67.5 to 103.5% with RSDs of 4.0–9.1% (n = 5) at the concentrations of 10 mg/L under the optimum extraction conditions. For the 15 polycyclic aromatic hydrocarbons, the linear ranges were 0.1 to 100 μg/L, the enrichment factors ranged from 645 to 723, and the relative recoveries ranged from 94.5 to 107.6% with RSDs of 4.6–9.0% (n = 5) at the concentrations of 10 μg/L. The usefulness of the developed method was demonstrated by applying it in the analysis of real‐world coking wastewater samples.  相似文献   

18.
建立了以二乙基二硫代氨基甲酸钠为配位剂,十二醇为萃取剂,乙醇为分散剂的悬浮固化分散液-液微萃取—火焰原子吸收光谱法测定水样中痕量铅的方法。详细探讨了影响萃取效率的因素。优化条件为:二乙基二硫代氨基甲酸钠的用量为10-6 mol,十二醇体积为90.00μL,乙醇体积为1.00 mL,pH为7.00。在最佳条件下,铅的检出限为1.12μg/L,富集倍率为16.00,线性范围5.00~600.00μg/L,对含有20.00μg/L和600.00μg/L Pb的标准溶液平行萃取测定11次,测定结果的RSD分别为3.73%和2.62%。本方法应用于自来水、河水及海水中痕量铅的分析,加标回收率为90.10%~100.70%。  相似文献   

19.
<正>Triacontyl modified silica gel as a sorbent coupled with gas chromatography-mass spectrometry(GC-MS) was developed to determine EPA prior 16 polycyclic aromatic hydrocarbons(PAHs) in water samples.Various parameters of solid-phase extraction such as organic modifier solvent,eluent,sample flow rate and volume were optimized.The developed method was found to yield a linear calibration curve in the concentration range of 0.05-8μg/L with respect to naphthalene,acenaphthylene,acenaphthene and 0.01-8μg/L for dibenz[a,h]anthracene and 0.05-14μg/L for fluorene,phenanthrene,anthracene and 0.01-14μg/L for the rest of analytes.Furthermore,the good accuracy and repeatability of the method made sure the requirements for achieving reliable analysis of PAHs in the environmental water samples,and the recoveries of optimal method were in the range of 80-120%except to higher volatility PAHs.C_(30)-bonded silica was proved to be an efficient sorbent for extraction of high molecular weight PAHs.  相似文献   

20.
A new microextraction technique termed dispersive liquid-liquid microextraction (DLLME) was developed. DLLME is a very simple and rapid method for extraction and preconcentration of organic compounds from water samples. In this method, the appropriate mixture of extraction solvent (8.0 microL C2Cl4) and disperser solvent (1.00 mL acetone) are injected into the aqueous sample (5.00 mL) by syringe, rapidly. Therefore, cloudy solution is formed. In fact, it is consisted of fine particles of extraction solvent which is dispersed entirely into aqueous phase. After centrifuging, the fine particles of extraction solvent are sedimented in the bottom of the conical test tube (5.0 +/- 0.2 microL). The performance of DLLME is illustrated with the determination of polycyclic aromatic hydrocarbons (PAHs) in water samples by using gas chromatography-flame ionization detection (GC-FID). Some important parameters, such as kind of extraction and disperser solvent and volume of them, and extraction time were investigated. Under the optimum conditions the enrichment factor ranged from 603 to 1113 and the recovery ranged from 60.3 to 111.3%. The linear range was 0.02-200 microg/L (four orders of magnitude) and limit of detection was 0.007-0.030 microg/L for most of analytes. The relative standard deviations (RSDs) for 2 microg/L of PAHs in water by using internal standard were in the range 1.4-10.2% (n = 5). The recoveries of PAHs from surface water at spiking level of 5.0 microg/L were 82.0-111.0%. The ability of DLLME technique in the extraction of other organic compounds such as organochlorine pesticides, organophosphorus pesticides and substituted benzene compounds (benzene, toluene, ethyl benzene, and xylenes) from water samples were studied. The advantages of DLLME method are simplicity of operation, rapidity, low cost, high recovery, and enrichment factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号