首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
研究了凝固-漂浮分散液液微萃取(SFO-DLLME)-分光光度法测定水样中痕量亚硝酸根的方法。以1-十二醇为萃取剂,乙醇为分散剂进行分散液液微萃取,离心后通过冷冻凝固操作使漂浮的萃取剂和水相分离。最佳实验条件下,方法的线性范围为2.0-280μg/L(r=0.999 9),检出限为0.34μg/L。方法已成功应用于环境水样分析,相对标准偏差在2.4%-3.3%,加标回收率在98.2%-102.4%。  相似文献   

2.
建立了以二乙基二硫代氨基甲酸钠(DDTC)为络合剂,硫酸钠-氯仿-水盐析萃取,紫外可见分光光度法测定痕量铜(Ⅱ)的新方法.研究了萃取的条件,共存离子的干扰.结果表明本法灵敏度高,选择性好,在最佳实验条件下,铜的线性范围为0.002~0.08μg/mL,0.002μg/mL铜标准液测定的RSD=1.9%(n=7),检出限...  相似文献   

3.
建立以二乙基二硫代氨基甲酸钠(DDT℃)为配位剂、TritonX-114为表面活性剂的浊点萃取-火焰原子吸收测定荔枝和桂圆肉中痕量铜的方法.研究了溶液pH值、配位剂类型与浓度、表面活性剂类型与浓度、平衡温度和平衡时间等实验条件对浊点萃取效率的影响.在最优的实验条件下,该方法测定铜的检出限为0.8μg/L,相对于传统火焰...  相似文献   

4.
建立了漂浮固化分散液液微萃取(DLLME-SFO)-气相色谱法(GC)同时测定化妆水中4种邻苯二甲酸酯类增塑剂(PAEs)的分析方法,并对萃取剂体积、分散剂种类、分散剂体积、萃取时间、水相pH值、盐浓度等参数进行优化。向样品溶液(化妆水和水的体积比为1∶10,pH 3.0)中快速加入15μL 1-十二醇(萃取剂)和1 300μL乙醇(分散剂),涡旋1 min,4 000 r.min-1离心5 min后,于冰浴中浸泡,待1-十二醇凝固后转移,融化后进行气相色谱分析。结果表明,该方法对4种目标化合物的线性范围为5.0~500.0μg.L-1,检出限为0.001~1.0μg.L-1,回收率为88%~108%,相对标准偏差为1.6%~3.3%。4种目标化合物的富集倍数为800~1 578倍。将该方法与其它测定邻苯二甲酸酯类增塑剂的前处理方法进行对比。该方法操作简单快速、灵敏度高,可满足化妆水中邻苯二甲酸酯类增塑剂的分析要求。  相似文献   

5.
采用凝固-漂浮分散液液微萃取(SFO-DLLME)-高效液相色谱法测定水样中3种氯酚.以密度小于水,且凝固点为24 ℃的1-十二醇为萃取剂,甲醇为分散剂,对水样进行分散液液微萃取.将混合液离心,再通过冷冻凝固操作使漂浮的萃取剂和水相分离,萃取剂复溶后进样测定.本实验确定的最佳实验条件为:萃取剂200 μL、分散剂300 μL、1.2 g NaCl、1 mol/L H3PO4 200 μL、样品体积8.0 mL、萃取时间3 min.3种氯酚测定的线性范围为0.05~6.0 mg/L;检出限为20~38 μg/L.应用本方法分析实际水样,加标回收率在90.11%~107.7%之间;日间相对标准偏差在3.5%~4.6%之间.本方法扩展了分散液液微萃取萃取剂的选择范围,具有简便、快速、准确、环境友好等特点.  相似文献   

6.
用分散液液微萃取-气相色谱/质谱法测定水样中的16种多环芳烃(PAHs)。通过实验确定最佳萃取条件为:20μL四氯化碳作萃取剂,1.0 mL乙腈作分散剂,超声萃取1 min。在优化条件下,多环芳烃的富集倍数达到216~511,方法在0.05~50μg/L范围内呈良好的线性关系,相关系数(R2)在0.9873~0.9983之间,检出限为0.0020~0.14μg/L。相对标准偏差(RSD)在3.82%~12.45%(n=6)之间。该方法成功用于实际水样中痕量多环芳烃的测定。  相似文献   

7.
王爱霞  张宏  刘琳琳 《分析化学》2001,29(11):1284-1287
使用PT-C18色谱预处理柱,以二乙基二硫代氨基甲酸钠(DDTC)和吡咯啶二硫代氨基甲酸铵(APDC)混合物为螯合剂,甲醇为洗脱剂,采用流动注射在线分离富集与原子吸收联且技术,对铅和镉的测定进行了研究。1min(4.2mL),检出限:Pb为6.90μg/L;Cd为0.45μg/L,相对标准偏差:Pb为2.80%;Cd为2.47%。  相似文献   

8.
建立了简便、快速、有效的分散液液微萃取-高效液相色谱法测定环境水样中2,4-二氯酚的分析方法。对萃取剂、分散剂的种类和体积、萃取时间、离心时间、盐浓度等影响萃取效率的因素进行了优化。方法的线性范围为1~500μg/L(r=0.9997),相对标准偏差(RSD)为3.8%(n=6),检出限为0.19μg/L。该法适用于环境水样中的痕量2,4-二氯酚的检测。  相似文献   

9.
《分析试验室》2021,40(9):1035-1038
建立了基于分散液液微萃取(DLLME)-数字成像比色(DIC)法测定水样中Fe的方法。在乙酸-乙酸钠缓冲溶液中,Fe(Ⅲ)被盐酸羟胺还原成Fe(Ⅱ)后与邻菲罗啉作用生成橙红色络合物。以离子液体[C6M IM][PF6]为萃取剂,乙腈为分散剂,采用涡旋辅助的分散液液微萃取方法对该络合物进行萃取和富集后,直接通过手机比色装置对Fe进行测定。优化了手机比色装置参数和分散液液微萃取的萃取剂种类及用量、分散剂种类及用量等条件。结果表明,在最佳条件下,方法的线性范围为24~200μg/L,相关系数(r~2)为0.9973,检出限为3μg/L,加标回收率为90.0%~108.0%,相对标准偏差(RSD)为0.8%~1.8%。该方法可用于测定环境水样中痕量Fe。  相似文献   

10.
建立了水样中7种萘二酚的涡旋辅助分散液液微萃取-悬浮固化/高效液相色谱(VA-DLLMESFO/HPLC)测定方法。以乙醚-十二醇为二元微萃取剂,通过涡旋分散方式协同萃取水样中的目标化合物,采用C18色谱柱分离,HPLC测定。优化了萃取剂及用量、萃取时间、氯化钠用量等条件。最佳萃取条件为:萃取剂为100μL乙醚和50μL十二醇,氯化钠用量为0.2 g/m L,涡旋萃取3 min。在优化条件下,7种萘二酚在一定质量浓度范围内线性关系良好,相关系数均大于0.997,方法检出限(S/N=3)为1.7~6.0μg/L;3个加标水平下的平均回收率为82.1%~106.0%,日内相对标准偏差(RSD,n=5)为1.2%~4.1%;中间添加水平的日间RSD(n=5)为2.5%~5.7%。该方法前处理简单,涡旋分散大大提高了物质传质速率,增大了萃取效率,缩短了萃取时间,是一种适用于水样中萘二酚类物质富集检测的绿色方法。  相似文献   

11.
This article describes the preconcentration of methyl methacrylate in produced water by the dispersive liquid–liquid microextraction using extraction solvents lighter than water followed by gas chromatography. In the present experiments, 0.4 mL dispersive solvent (ethanol) containing 15.0 μL extraction solvent (toluene) was rapidly injected into the samples and followed by centrifuging and direct injection into the gas chromatograph equipped with flame ionization detector. The parameters affecting the extraction efficiency were evaluated and optimized including toluene (as extraction solvent), ethanol (as dispersive solvent), 15 μL and 0.4 mL (as the volume of extraction and dispersive solvents, respectively), pH 7, 20% ionic strength, and extraction's temperature and time of 20°C and 10 min, respectively. Under the optimum conditions, the figures of merits were determined to be LOD = 10 μg/L, dynamic range = 20–180 μg/L, RSD = 11% (n = 6). The maximum recovery under the optimized condition was determined to be 79.4%.  相似文献   

12.
Zheng C  Zhao J  Bao P  Gao J  He J 《Journal of chromatography. A》2011,1218(25):3830-3836
A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples.  相似文献   

13.
袁继委  王金成  徐威力  徐方曦  卢宪波 《色谱》2020,38(11):1308-1315
多环芳烃和酞酸酯是国际公认的优控污染物,因此准确快速地测定水中多环芳烃和酞酸酯非常重要。凝固漂浮有机液滴-分散液液微萃取(DLLME-SFO)是一种简便、快速、环境友好、灵敏度高的样品前处理技术。采用DLLME-SFO同时测定地表水中多环芳烃和酞酸酯的分析方法鲜有报道。该文采用凝固漂浮有机液滴-分散液液微萃取富集技术,结合高效液相色谱紫外/荧光法,建立了同时测定地表水中16种多环芳烃和6种酞酸酯的分析方法。考察优化了影响萃取效率的主要因素,包括萃取剂的种类和用量、分散剂的种类和用量、萃取时间和离子强度等。优化后的萃取实验条件为:5.0 mL水样,10 μL十二醇为萃取溶剂,500 μL甲醇为分散溶剂,涡旋振荡时间2 min,氯化钠用量0.2 g。目标化合物经多环芳烃专用色谱柱(SUPELCOSILTM LC-PAH,150 mm×4.6 mm,5 μm)结合乙腈-水梯度洗脱分离,16种多环芳烃除苊烯外采用荧光检测,苊烯和6种酞酸酯采用紫外检测,外标法定量。结果表明,22种目标化合物的基质加标回收率为60.2%~113.5%,相对标准偏差为1.9%~14.3%;多环芳烃和酞酸酯的检出限分别为0.002~0.07 μg/L和0.2~2.2 μg/L;多环芳烃和酞酸酯的定量限分别为0.006~0.23 μg/L和0.8~7.4 μg/L。该方法简便、快速,环境友好,灵敏度高,可用于地表水中多环芳烃和酞酸酯的快速分析检测。  相似文献   

14.
This paper described a novel approach for the determination of bisphenol A by dispersive liquid‐phase microextraction with in situ acetylation prior to GC‐MS. In this derivatization/extraction method, 500 μL acetone (disperser solvent) containing 30.0 μL chlorobenzene (extraction solvent) and 30.0 μL acetic anhydride (derivatization reagent) was rapidly injected into 5.00 mL aqueous sample containing bisphenol A and K2CO3 (0.5% w/v). Within a few seconds the analyte was derivatized and extracted at the same time. After centrifugation, 1.0 μL of sedimented phase containing enriched analyte was determined by GC‐MS. Some important parameters, such as type and volume of extraction and disperser solvent, volume of acetic anhydride, derivatization and extraction time, amount of K2CO3, and salt addition were studied and optimized. Under the optimum conditions, the LOD and the LOQ were 0.01, 0.1 μg/L, respectively. The experimental results indicated that there was linearity over the range 0.1–50 μg/L with coefficient of correlation 0.9997, and good reproducibility with RSD 3.8% (n = 5). The proposed method has been applied for the analysis of drinking water samples, and satisfactory results were achieved.  相似文献   

15.
A method was developed to determine 2‐mercaptobenzimidazole in water and urine samples using dispersive liquid–liquid microextraction technique coupled with ultraviolet–visible spectrophotometry. It was essential to peruse the effect of all parameters that can likely influence the performance of extraction. The influence of parameters, such as dispersive and extraction solvent volume and sample volume, on dispersive liquid–liquid microextraction was studied. The optimization was carried out by the central composite design method. The central composite design optimization method resulted in 1.10 mL dispersive solvent, 138.46 μL extraction solvent, and 4.46 mL sample volume. Under the optimal terms, the calibration curve was linear over the range of 0.003–0.18 and 0.007–0.18 μg/mL in water and urine samples, respectively. The limit of detection and quantification of the proposed approach for 2‐mercaptobenzimidazole were 0.013 and 0.044 μg/mL in water samples and 0.016 and 0.052 μg/mL in urine samples, respectively. The method was successfully applied to determination of 2‐mercaptobenzimidazole in urine and water samples.  相似文献   

16.
The need for highly reliable methods for the determination of trace and ultratrace elements has been recognized in analytical chemistry and environmental science. A simple and powerful microextraction technique was used for the detection of the lead ultratrace amounts in water samples using the dispersive liquid-liquid microextraction (DLLME), followed by the electrothermal atomic absorption spectrometry (ET AAS). In this microextraction technique, a mixture of 0.50 mL acetone (disperser solvent), containing 35 microL carbon tetrachloride (extraction solvent) and 5 microL diethyldithiophosphoric acid (chelating agent), was rapidly injected by syringe into the 5.00 mL water sample, spiked with lead. In this process, the lead ions reacted with the chelating agent and were extracted into the fine droplets of CCl(4). After centrifugation (2 min at 5000 rpm), the fine CCl4 droplets were sedimented at the bottom of the conical test tube (25+/-1 microL). Then, 20 microL from the sedimented phase, containing the enriched analyte, was determined by ET AAS. The next step was the optimization of various experimental conditions, affecting DLLME, such as the type and the volume of the extraction solvent, the type and the volume of the disperser solvent, the extraction time, the salt effect, pH and the chelating agent amount. Moreover, the effect of the interfering ions on the analytes recovery was also investigated. Under the optimum conditions, the enrichment factor of 150 was obtained from only a 5.00 mL water sample. The calibration graph was linear in the range of 0.05-1 microg L(-1) with the detection limit of 0.02 microg L(-1). The relative standard deviation (R.S.D.) for seven replicate measurements of 0.50 microg L(-1) of lead was 2.5%. The relative lead recoveries in mineral, tap, well and sea water samples at the spiking level of 0.20 and 0.40 microg L(-1) varied from 93.5 to 105.0. The characteristics of the proposed method were compared with the cloud point extraction (CPE), the liquid-liquid extraction, the solid phase extraction (SPE), the on-line solid phase extraction (SPE) and the co-precipitation, based on bibliographic data. The main DLLME advantages combined with ET AAS were simplicity of operation, rapidity, low cost, high-enrichment factor, good repeatability, low consumption of extraction solvent, requiring a low sample volume (5.00 mL).  相似文献   

17.
Dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography (HPLC)-UV detection was applied in rat urine for the extraction and determination of tetrahydropalmatine (THP) and tetrahydroberberine (THB), both active components in Rhizoma corydalis. Various parameters affecting the extraction efficiency, such as the type and volume of extraction and dispersive solvent, pH, etc. were evaluated. Under the optimal conditions (extraction solvent: 37 μL of chloroform, dispersive solvent: 100 μL of methanol, alkaline with 100 μL of 1 mol/L NaOH, and without salt addition), the enrichment factors of THP and THB were more than 30. The extraction recoveries were 69.8-75.8% and 72.7-77.6% for THP and THB in rat urine, respectively. Both THP and THB showed good linearity in the range of 0.025-2.5 μg/mL, and the limit of quantification was 0.025 μg/mL (S/N=10, n=6). The intra-day and inter-day precision of THP and THB were <12.6%. The relative recoveries ranged from 95.5 to 107.4% and 96.8 to 100.9% for THP and THB in rat urine, respectively. The method has been successfully applied to rat urine samples. The results demonstrated that DLLME is a very simple, rapid and efficient method for the extraction and preconcentration of THP and THB from urine samples.  相似文献   

18.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

19.
A novel method, dispersive liquid-liquid microextraction combined with liquid chromatography-fluorescence detection is proposed for the determination of three beta-blockers (metoprolol, bisoprolol, and betaxolol) in ground water, river water, and bottled mineral water. Some important parameters, such as the kind and volume of extraction and dispersive solvents, extraction time, pH, and salt effect were investigated and optimized. In the method, a suitable mixture of extraction solvent (60 μL carbon tetrachloride) and dispersive solvent (1 mL acetonitrile) were injected into the aqueous samples (5.00 mL) and the cloudy solution was observed. After centrifugation, the enriched analytes in the bottom CCl(4) phase were determined by liquid chromatography with fluorescence detection. Under the optimum conditions, the enrichment factors (EFs) for metoprolol, bisoprolol, and betaxolol were 180, 190, and 182, and the limits of detection (LODs) were 1.8, 1.4, and 1.0 ng L(-1) , respectively. A good linear relationship between the peak area and the concentration of analytes was obtained in the range of 3-150 ng L(-1) . The relative standard deviations (RSDs) for the extraction of 10 ng L(-1) of beta-blockers were in the range of 4.6-5.7% (n = 5). Compared with other methods, dispersive liquid-liquid microextraction is a very simple, rapid, sensitive (low limit of detection), and economical (only 1.06 mL volume of organic solvent) method, which is in compliance with the requirements of green analytical methodologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号