首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Ferromagnetic La0.7Sr0.3MnO3 (LSMO) and antiferromagnetic La0.33Ca0.67MnO3 (LCMO) layers were grown on SrTiO3 (STO) substrates by the pulsed laser deposition technique. LSMO films had rougher surfaces and larger grain sizes than LCMO films. Fully strained bilayers, in which each layer was as thin as 10 nm, were prepared by changing their stacking sequences, i.e. LSMO/LCMO/STO and LCMO/LSMO/STO. The former had higher TC (350 K) than the latter (300 K), and exchange bias effects were only observed in the former bilayers. This revealed that microstructures could play an important role in the transport and magnetic properties of manganese oxide thin films.  相似文献   

2.
The perovskite bilayers La0.67Ca0.33MnO3 (LCMO) (100 nm) / La0.67Sr0.33MnO3(LSMO) (100 nm) and LSMO (100 nm) / LCMO (100 nm) are fabricated by a facing-target sputtering technique. Their transport and magnetic properties are investigated. It is found that the transport properties between them are different obviously due to distinguishable structures, and the different lattice strains in both films result in the difference of metal-to-insulator transition. Only single-step magnetization loop appears in our bilayers from 5K to 320K, and the coercive force of LSMO/LCMO varies irregularly with a minimum ~ 2387A/m which is lower than that of LCMO and LSMO single layer films. The behaviour is explained by some magnetic coupling.  相似文献   

3.
La0.67Ca0.33MnO3 (LCMO) and Ag admixed La0.67Ca0.33MnO3 (Ag-LCMO) polycrystalline films have been prepared on SrTiO3 single crystal (100) substrates by ultrasonic spray pyrolysis technique. These films are characterized using XRD, SEM, and temperature dependence of resistivity (ρ-T) and ac susceptibility (χ-T). The films are having cubic structure with lattice parameters as 3.890 and 3.885 Å for LCMO and Ag-LCMO films, respectively. The peek in ρ-T curve (Tp) and the ferromagnetic transition temperature (TC) for the Ag-LCMO film is higher than that of LCMO film. The stability of both the films was tested by repeated measurements of its characteristics over a period of one week after several thermal cycling from room temperature to 77 K. In the LCMO film, the peak in the ρ-T curve (Tp) is found to shift towards lower value and conduction noise of the film increases in the subsequent measurements. In the case of Ag-LCMO the value of Tp, TC and conduction noise of the film did not change even after several measurements. Silver segregating at the grain boundaries in Ag-LCMO polycrystalline film seems to be responsible for improving the characteristics of Ag-LCMO films.  相似文献   

4.
The electroresistance (ER) of La0.67Ca0.33MnO3 (LCMO) epitaxial thin films with different thicknesses was studied. For the 110 nm thick LCMO film, its ER shows a maximum at Tp, where the resistance shows a peak, and decreases to zero at lower temperatures. While for the 30 nm thick LCMO film, its ER is remarkable in a wide temperature range. Another interesting observation in this work is that the electric current can tune the magnetoresistance of the ultrathin LCMO thin film. The results were discussed by considering the coexistence of ferromagnetic metallic phase with the charge ordered phase, and the variation of the phase separation with film thickness and electric current. This work also demonstrates that electric current can tune the magnetoresistance of the manganites, which is helpful for their applications.  相似文献   

5.
采用多种X射线衍射技术和磁电阻测量技术研究了不同厚度的La0.8Ca0.2MnO3/SrTiO3 (LCMO/STO)薄膜的应变状态及其对磁电阻性能的影响.结果表明,在STO(001)单晶衬底上生长的LCMO薄膜沿[00l]取向生长.LCMO薄膜具有伪立方钙钛矿结构,随着薄膜厚度的增加,面内晶格参数增加,垂直于面内的晶格参数减小,晶格参数ab相近,略小于c.LC 关键词: X射线衍射 微结构 应变 物理性能  相似文献   

6.
系统研究了衬底为SrTiO3和LaAlO3上的La0.67Ca0.33MnO3薄膜中的矫顽力随厚度和应变的变化。结构分析表明薄膜为(001)方向织构,而且薄膜中的晶粒尺寸随着薄膜厚度的减小而减小。磁测量表明矫顽力先随着膜厚的减小而增加,在t=10-25nm附近到达一极大值。随后,矫顽力随厚度的减小而降低。还得出矫顽力的大小与测量方向有关:t≥25nm (t≤10nm)时,难磁化方向的矫顽力大于(小于)易磁化方向的矫顽力。据此,我们提出:在厚膜(t≥25nm)中,矫顽力变化由畴壁钉扎机制决定;在超薄膜(t≤10nm)中,则与磁畴的形核机制有关。根据t= 5、10、25、400nm的LCMO/STO薄膜的初始磁化曲线,以及t=5,50nm的LCMO/LAO薄膜的小磁滞回线的测量,我们对薄膜中矫顽力机制作了验证,并且还讨论了钉扎和形核机制发生的非均匀区的尺寸。  相似文献   

7.
In this paper we report a new method to fabricate nanostructured films, La0.67Ca0.33MnO3 (LCMO) nanostructured films have been fabricated by using pulsed electron beam deposition (PED) on anodized aluminium oxide (AAO) membranes, The magnetic and electronic transport properties are investigated by using the Quantum Design physics properties measurement system (PPMS) and magnetic properties measurement system (MPMS). The resistance peak temperature (Tp) is about 85 K and the Curie temperature (To) is about 250 K for the LCMO film on an AAO membrane with a pore diameter of 20nm. Large magnetoresistance ratio (MR) is observed near Tp. The MR is as high as 85% under 1 T magnetic field. The great enhancement of MR at low magnetic fields could be attributed to the lattice distortion and the grain boundary that are induced by the nanopores on the AAO membrane.  相似文献   

8.
Polycrystalline samples of La0.67Ca0.33MnO3 were prepared by solid-state reactions by varying the pelletization force and the sintering temperature. Lowering the sintering temperature gave rise to smaller grains and increased the overall resistivity of the ceramic. Partial melting was observed in the ceramics sintered at higher temperatures (1400-1500 °C). Additionally, these ceramics showed two distinct resistivity peaks. The resistivity peak near the magnetic transition (TC) was sharp, whereas the second peak was a broad one observed below TC.  相似文献   

9.
Perfect epitaxial growth of La0.67Ca0.33MnO3 (LCMO) thin film has been achieved on (1 0 0) LaAlO3 (LAO) single crystal substrate by radio frequency sputtering method. X-ray diffraction (XRD) and electron diffraction analysis indicates that La0.67Ca0.33MnO3 film grows epitaxially on LaAlO3 along [1 0 0] direction of the substrate. The resistivity variation with temperature of the film shows a sharp metal to semiconductor transition peak around 253 K, which is close to that of the target. The magnetoresistance (MR) also reveals high quality epitaxy film characteristic at low temperatures and near the metal to semiconductor transition temperature.  相似文献   

10.
We report a novel, low temperature (450-600 °C) route for the synthesis of highly crystalline and homogeneous nanoparticles of lanthanum calcium manganese oxide La0.67Ca0.33MnO3 (LCMO). The nanocrystallites, with average particle size of 30 nm, possess a ferromagnetic-paramagnetic transition temperature (Tc) of 300 K, which is about 50 K higher than that of a bulk single crystal. The transition temperature was found to be inversely proportional to the particle size. The Rietveld analysis of the powder X-ray diffraction data of the phase-pure nanopowders reveals that the particle size reduction leads to a significant contraction of the unit cell volume and a reduction of the unit cell anisotropy. We propose that these two lattice effects are responsible for the observed enhancement in Tc.  相似文献   

11.
An enhanced magnetoresistance and a two-fold effect result from impurity dopant were observed in composites of La0.67Ca0.33MnO3/YSZ and La0.67Ca0.33MnO3/Fe3O4. Where YSZ represents yttria-stabilized zirconia and the doping level of both YSZ and Fe3O4 is 1 mol%. Different electrical and magnetic transport properties, in particular a lower field magnetization behavior, were observed between pure La0.67Ca0.33MnO3 and the impurity doped La0.67Ca0.33MnO3 composites. Compared with pure La0.67Ca0.33MnO3, a possible interpretation is presented by considering the influences of YSZ and Fe3O4 on the structure of grain boundaries and/or surfaces of La0.67Ca0.33MnO3grains.  相似文献   

12.
The structure, orientation, and the response of electroresistance to magnetic field H and varying temperature T have been studied for 30-nm-thick La0.67Ba0.33MnO3 (LBMO) films. The deviation of the [001] direction in manganite layers from the normal to the plane of the (LaAlO3)0.29 + (SrAl0.5Ta0.5O3)0.71 substrate strictly corresponds to the vicinal angle of the latter. The minimum yield determined from 227-keV proton scattering spectra is 0.025, signifying a high order of the cationic sublattice in the films. The biaxial compression of stable nuclei of the manganite phase affects their stoichiometry, thus contributing to the depletion of LBMO films in the alkaline-earth element. The maximum electroresistance values have been observed in the films grown at T max ≈ 320 K, a temperature about 20 K lower than the Curie temperature of the corresponding bulk single crystals, and the maximum magnetoresistance (MR ≈ −0.42, μ0 H = 2 T) occurs at T ≈ 300 K. At low temperatures (T < T max/3) and μ0 H < 0.45 T, the electroresistance response of LBMO films to a magnetic field materially depends on the anisotropic magnetoresistance and the intensity of hole scattering from domain walls; when μ0 H > 0.5 T, the major current-carrier relaxation mechanism is the interaction with magnons.  相似文献   

13.
The influence of Fe3O4 contents on the electrical transport properties (resistivity and ac susceptibility) of a series of composite samples of La0.67Ca0.33MnO3/Fe3O4 is studied. Results show that the Fe3O4 phase not only shifts the intrinsic insulator-metal (I-M) transition temperature TP1 to a lower temperature, but also causes a new I-M transition at a lower temperature TP2 (TP2<TP1). On the basis of an analysis by scanning electron microscopy and X-ray diffraction, we suggest that the decrease of the I-M transition temperature and the formation of the new I-M transition are caused by the segregation of a new phases related to the Fe3O4 at grain boundaries or surfaces of the La0.67Ca0.33MnO3 grains.  相似文献   

14.
马玉彬 《物理学报》2009,58(7):4976-4979
研究了氧空位对La0.5Ca0.5MnO3 (LCMO)多晶块材的电输运和磁性质的影响. 随着氧空位的增加, 样品在高温段的电阻率一直增加, 并满足绝热小极化子模型, 而低温段的电阻率先下降后上升, 并出现明显的dR/dT>0的行为, 直至最后变为绝缘的. 氧空位的增加抑止了反铁磁相的出现, 使得脱氧的LCMO样品不发生反铁磁转变, 进一步增加氧空位则会抑制铁磁相. 关键词: 0.5Ca0.5MnO3')" href="#">La0.5Ca0.5MnO3 反铁磁相变 铁磁相变 脱氧  相似文献   

15.
The (1−x)La0.67Ca0.33MnO3+xCuO composites have been synthesized by a new liquid phase method. The XRD and SEM measurements reveal that little CuO is soluble in the structure of La0.67Ca0.33MnO3 and is mainly distributed at the grain boundary of La0.67Ca0.33MnO3. As CuO content x increases, the magnetization M values increase until x=0.05 and M values decrease when x further increases at low temperature. For x=0.10, 0.20 and 0.30 composites, double metal-insulator transitions accompanying a single ferromagnetic transition are observed. Large low-field magnetoresistance is achieved for the composites and the largest magnetoresistance appeared when x=0.20.  相似文献   

16.
Magnetic nanoparticles of La0.67Sr0.33MnO3 (LSMO) manganite were prepared by sol-gel method. Phase formation and crystal structure of the synthesized powder were examined by the X-ray diffraction (XRD) using the Rietveld analysis. The mean particle size was determined by the transmission electron microscopy (TEM). Infrared transmission spectroscopy revealed that stretching and bending modes are influenced by calcinations temperature. The temperature dependence of the ac magnetic susceptibility was measured at different frequencies and ac magnetic fields in the selected ranges of 40-1000 Hz and 80-800 A/m, respectively. The temperature dependence of ac susceptibility shows a characteristic maxima corresponding to the blocking temperature near room temperature. The frequency dependence of the blocking temperature is well described by the Vogel-Fulcher law. By fitting the experimental data with this law, the relaxation time τ0=1.7×10−12 s, characteristic temperature T0=262±3 K, anisotropy energy Ea/k=684±15 K and effective magnetic anisotropy constant keff=2.25×104 erg/cm3 have been obtained. dc Magnetization measurement versus magnetic field shows that some of LSMO nanoparticles are blocked at 293 K. The role of magnetic interparticle interactions on the magnetic behavior is also investigated.  相似文献   

17.
The temperature and magnetic field dependence of the radio-frequency (RF) transverse susceptibility (χT) of La0.67Ca0.33MnO3 crystalline nanowires has been studied using a very sensitive self-resonant tunnel-diode oscillator (TDO) technique. The nanowires were synthesized using porous templates of anodized alumina by chemical solution deposition technique, and the crystalline nature of the nanowires with the average diameter of 70 nm was confirmed by TEM, SAED, and HREM. RF transverse susceptibility experiments reveal the presence of a double-peak structure at T≤245 K (the Curie temperature) but a single peak at T>245 K. This distinguishes the low temperature ferromagnetic state from the high temperature paramagnetic state. The effective magnetic anisotropy field (HK), which corresponds to the peak location of χT, has been found to increase with decrease in temperature from the Curie temperature.  相似文献   

18.
The influence of SiO2 on the electrical transport properties of LCMO/SiO2 composites with different SiO2 contents x is investigated, where LCMO represents La2/3Ca1/3MnO3. Results show that the SiO2 phase not only shifts the metal–insulator transition temperature (Tp) to a high temperature range, but also has an effect on the magnetoresistance (MR) of the composites. The temperature dependence of resistivity indicates that the Tp of the composites is obviously higher than that of pure LCMO, and that the peak resistivity ρmax of the composites is lower than that of pure LCMO. In the SiO2 content x∼0.02, the TP is the highest and ρmax becomes the lowest. The experimental observation is discussed on the basis of the analysis of scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns. Compared with pure LCMO, a possible interpretation is presented by considering the influence of SiO2 on the coupling between ferromagnetic (FM) domains of LCMO.  相似文献   

19.
在1064 nm波长脉冲激光(脉宽25 ps)的照射下,钙钛矿氧化物薄膜La0.67Ca0.33MnO3/SrTiO3具有超快光电效应,对激光脉冲显示ps量级的响应时间,上升沿响应时间300 ps,半高宽700 ps,同时,对激光能量的响应灵敏度为500 mV/mJ。  相似文献   

20.
Boikov  Yu. A.  Lil’enfors  T.  Olsson  E.  Klaeson  T.  Danilov  V. A. 《Physics of the Solid State》2011,53(10):2168-2173
A significant (∼1.8%) positive unit between the parameters of the crystal lattice is the reason of tetragonal distortion (a /a ≈ 1.04) and reduction in the volume of the unit cell of La0.67Ca0.33MnO3 films (15 nm) quasicoherently grown on the (001) surface of a LaAlO3 substrate. The films consist of single-crystal blocks with the lateral size of 30–50 nm. The atomically smooth LaAlO3-La0.67Ca0.33MnO3 interphase boundary has no misfit dislocations. At T = 4.2 K, the transformation of nonferromagnetic phase inclusions into ferromagnetic ones in a constant magnetic field H is accompanied by a stable reduction in the electrical resistivity ρ of manganite films with time, so that the curve ρ(t) is well approximated by the relationship ρ(t) ∼ ρ1(tt 0)1/2, (where t 0 is the time for establishment of the specified value (μ0 H = 5 T) of the magnetic field and ρ1 is a coefficient independent of H). The magnetocrystalline anisotropy due to the elastic deformation of films by the substrate and stratification of electronic phases are the reasons of the distinct hysteresis in the dependences ρ(μ0 H, T < 100 K) obtained on μ0 H scanning in the sequence 5 T → 0 → −5 T → 0 → 5 T. At T = 50 K and μ0 H = 0.4 T, the magnetoresistance MR = 100% [ρ(μ0 H) − ρ(μ0 H = 0)]/ρ(μ0 H = 0) of LCMO films attains 150%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号