首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In analysing the geometrically nonlinear problem of an axisymmetrical thin-walled shell, the paper combines the perturbation method with the finite element method by introducing the former into the variational equation to obtain a series of linear equations of different orders and then solving the equations with the latter. It is well-known that the finite element method can be used to deal with difficult problems as in the case of structures with complicated shapes or boundary conditions, and the perturbation method can change the nonlinear problems into linear ones. Evidently the combination of the two methods will give an efficient solution to many difficult nonlinear problems and clear away some obstacles resulted from using any of the two methods solely. The paper derives all the formulas concerning an axisym-metric shell of large deformation by means of the perturbation finite element method and gives two numerical examples,the results of which show good convergence characteristics.  相似文献   

2.
随机杆系结构几何非线性分析的递推求解方法   总被引:2,自引:0,他引:2  
黄斌  索建臣  毛文筠 《力学学报》2007,39(6):835-842
建立了随机静力作用下考虑几何非线性的随机杆系结构的随机非线性平衡方程. 将和 位移耦合的随机割线弹性模量以及随机响应量表示为非正交多项式展开式,运用传统的摄动方法获 得了关于非正交多项式展式的待定系数的确定性的递推方程. 在求解了待定系数后,利用非 正交多项式展开式和正交多项式展开式的关系矩阵,可以很方便地得到未知响应量的二阶统计矩. 两杆结构和平面桁架拱的算例结果表明,当随机量涨落较大时,递推随机有限元方法比基于 二阶泰勒展开的摄动随机有限元方法更逼近蒙特卡洛模拟结果,显示了该方法对几何非线性 随机问题求解的有效性.  相似文献   

3.
一种典型的半解析数值方法——线法被引入功能梯度材料的结构分析。首先推导了功能梯度材料位移形式的平衡方程和边界条件,然后阐述了线法功能梯度材料结构分析的基本步骤和数值原理。该方法的基本思想是通过有限差分将问题的控制方程半离散为定义在沿梯度方向离散节线上的常微分方程组,然后应用B样条函数Gauss配点法求解该常微分方程组得到问题的解答。为演示线法在功能梯度材料结构分析中的应用,给出了线性梯度和指数梯度功能梯度材料板分别受恒定位移、均匀拉伸载荷和弯曲载荷作用的数值算例。与相应问题解析解和其他数值方法的比较表明,线法的计算结果具有很高的精度,而且不需要任何特殊的考虑就能够有效模拟材料内部物性参数的连续变化,也无需事先选取满足特定条件的待定场函数,是一种非常适合功能梯度材料结构形式和材料特点的半解析数值方法。  相似文献   

4.
提出了结构半解析灵敏度分析的改进算法,该算法实现简便,对于设计变量摄动步长具有极佳的数值稳定特性。首先,从总体角度推导静力问题半解析法灵敏度分析新算法,提出了位移与应力灵敏度列式,并给出了算法实施途径;然后,将此思路推广于自振频率、屈曲临界荷载和瞬态响应等多种问题,提出了相应的计算步骤。以梁单元与壳单元等典型结构为例,开展了多个算例测试。测试表明,改进算法计算精度和效率均有提升,特别是设计变量步长有更大的数值稳定区域,为复杂工程结构形状优化的灵敏度分析提供了新途径。  相似文献   

5.
In this work we consider a cylindrical structure composed of a nonlinear core (inhomogeneity) surrounded by a different nonlinear shell (matrix). We elaborate a technique for determining its linear elastic moduli (second order elastic constants) and the nonlinear elastic moduli, which are called Landau coefficients (third order elastic constants). Firstly, we develop a nonlinear perturbation method which is able to turn the initial nonlinear elastic problem into a couple of linear problems. Then, we prove that only the solution of the first linear problem is necessary to calculate the linear and nonlinear effective properties of the heterogeneous structure. The following step consists in the exact solution of such a linear problem by means of the complex elastic potentials. As result we obtain the exact closed forms for the linear and nonlinear effective elastic moduli, which are valid for any volume fraction of the core embedded in the external shell.  相似文献   

6.
功能梯度材料板件三维分析的半解析梯度有限元法   总被引:1,自引:0,他引:1  
将半解析有限元与梯度有限元相结合,形成一种半解析梯度有限元来求解功能梯度材料板件问题。该方法兼有有限元法的适应性强、程序统一,半解析有限元法的节省单元与计算工作量,梯度有限元法的适应构件内部材料性能任意梯度分布等特点,并实现用一维数值计算给出构件三维分析结果。算例分析表明了方法的精度、功能与上述特点,充分揭示了功能梯度材料板件力学响应的三维形态。半解析梯度有限元法可推广应用到其他功能梯度材料面结构的各类分析中。  相似文献   

7.
Introduction Thestudyonnonlineartransienttransferproblemsissignificantpracticallyand theoretically[1,2].Insolvingtheseproblemsdiscretelyinthetimedomain,eitherbyiterative techniques,orbylinearizingapproachesbasedonsomeadditionalassumptions,the adaptabilityofcomputingaccuracytothechangeofthesizeoftimestepneedtobetakeninto account[3].Yang[3]presentedaprecisealgorithminthetimedomaintosolvetransfer problems,themajoradvantagesofthisalgorithmtosolvenonlinearproblemsisthatno additionalassumptionandite…  相似文献   

8.
The perturbation method is one of the effective methods for so-lving problems in nonlinear continuum mechanics.It has been de-veloped on the basis of the linear analytical solutions for the o-riginal problems.If a simple analytical solution cannot be ob-tained.we would encounter difficulties in applying this method tosolving certain complicated nonlinear problems.The finite ele-ment method appears to be in its turn a very useful means for sol-ving nonlinear problems,but generally it takes too much time incomputation.In the present paper a mixed approach,namely,theperturbation finite element method,is introduced,which incorpo-rates the advantages of the two above-mentioned methods and enablesus to solve more complicated nonlinear problems with great savingin computing time.Problems in the elastoplastic region have been discussed anda numerical solution for a plate with a central hole under tensionis given in this paper.  相似文献   

9.
In the previous paper[7], the author presented a System of First-Order Differential Equations for the problem of axisynrm’trically loaded shells of revolution with small elastic. strains and arbitrarily large axial deflections, and a Method of Variable-Characteristic Nondimensionization with a Scale of Load Parameter. On this basis, by taking the weighted root-mean-square deviation of angular deflection from linearity as perturbation parameter, this paper pressents a perturbation system of nondimensional differential equations for the problem, thus transforms the geometrical nonlinear problem into several linear problems. This paper calculates these linear problems by means of the initial parameter method of numerical integration. The numerical results agree quite well with the experiments[4].  相似文献   

10.
Cation exchange in groundwater is one of the dominant surface reactions. Mass transfer of cation exchanging pollutants in groundwater is highly nonlinear due to the complex nonlinearities of exchange isotherms. This makes difficult to derive analytical solutions for transport equations. Available analytical solutions are valid only for binary cation exchange transport in 1-D and often disregard dispersion. Here we present a semi-analytical solution for linearized multication exchange reactive transport in steady 1-, 2- or 3-D groundwater flow. Nonlinear cation exchange mass–action–law equations are first linearized by means of a first-order Taylor expansion of log-concentrations around some selected reference concentrations and then substituted into transport equations. The resulting set of coupled partial differential equations (PDEs) are decoupled by means of a matrix similarity transformation which is applied also to boundary and initial concentrations. Uncoupled PDE’s are solved by standard analytical solutions. Concentrations of the original problem are obtained by back-transforming the solution of uncoupled PDEs. The semi-analytical solution compares well with nonlinear numerical solutions computed with a reactive transport code (CORE2D) for several 1-D test cases involving two and three cations having moderate retardation factors. Deviations of the semi-analytical solution from numerical solutions increase with increasing cation exchange capacity (CEC), but do not depend on Peclet number. The semi-analytical solution captures the fronts of ternary systems in an approximate manner and tends to oversmooth sharp fronts for large retardation factors. The semi-analytical solution performs better with reference concentrations equal to the arithmetic average of boundary and initial concentrations than it does with reference concentrations derived from the arithmetic average of log-concentrations of boundary and initial waters.  相似文献   

11.
In this paper,a nonlinear,unsteady3-D free surface problem of the oblique water exitof an axisymmetric body with a large water exit-angle was investigated by means of theperturbation method in which the complementary angle a of the water exit angle waschosen as a small parameter.The original3-D problem was solved by expanding it into apower series of a and reduced to a number of2-D problems.The integral expressions forthe first three order solutions were given in terms of the complete elliptic functions of thefirst and second kinds.The zeroth-order solution didn‘t turn out to be a linear problem asusual but a nonlinear one corresponding to the vertical water exit for the same body.Computational results were presented for the free surface shapes and the forces exerted upto the second order during the oblique water exit of a series of ellipsoids with various ratiosof length to diameter at different Froude numbers.  相似文献   

12.
变厚度中厚板和中厚壳的大挠度分析   总被引:1,自引:0,他引:1  
采用摄动有限元法分析了变厚度中厚板和中厚壳的大挠度问题。文中借助虚功原理导出了这类板壳的一般非线性有限元方程,同时利用摄动展开求得了逐级摄动有限元的递推算式。算例表明,摄动有限元法分析变厚度中厚板壳问题同样能获得效率高精度好的结果。  相似文献   

13.
IntroductionIHCPs (InverseHeatConductionProblems)arecloselyassociatedwithmanyengineeringaspects,andwelldocumentedintheliteratures,coveringtheidentificationsofthermalparameters[1,2 ],boundaryshapes[3],boundaryconditions[4 ]andsource_relatedterms[5 ,6 ]etc .Howeveritseemsthatonlylittleworkisdirectlyconcernedwithmulti_variablesidentificationsbyauthors’knowledge.Tsengetal.presentedanapproachtodeterminingtwokindsofvariables[7],butonlygavefewnumericalexamplestodeterminethemsimultaneously .Thesol…  相似文献   

14.
In this paper, a refined asymptotic perturbation method for general nonlinear dynamical systems is proposed for the first time. This method can be considered as an alternative means for the traditional multiple scales method. Moreover, it is easier to be understood and used to carry out higher-order perturbation analysis. In addition, three examples including the Duffing equation, a system with quadratic and cubic nonlinearities to a subharmonic excitation, as well as the coupled van der Pol oscillator with parametrical excitations are investigated to illustrate the validity and usefulness of the proposed technique. The analytical and numerical results show good agreement.  相似文献   

15.
Here, the nonlinear thermo-elastic buckling/post-buckling characteristics of laminated circular conical–cylindrical/conical–cylindrical–conical joined shells subjected to uniform temperature rise are studied employing semi-analytical finite element approach. The nonlinear governing equations, considering geometric nonlinearity based on von Karman’s assumption for moderately large deformation, are solved using Newton–Raphson iteration procedure coupled with displacement control method to trace the pre-buckling/post-buckling equilibrium path. The presence of asymmetric perturbation in the form of small magnitude load spatially proportional to the linear buckling mode shape is assumed to initiate the bifurcation of the shell deformation. The study is carried out to highlight the influences of semi-cone angle, material properties and number of circumferential waves on the nonlinear thermo-elastic response of the different joined shell systems.  相似文献   

16.
A nonlinear problem for penetrant diffusion with relaxation in polymers is considered. A numerical approach to solving this type of problems is developed. The proposed numerical scheme based on a finite element domain approximation and a time difference method can be used for numerical simulation of the considered penetrant diffusion in 2-D and 3-D domains. A numerical procedure and a corresponding computer code are created and tested for some examples in 1-D and 2-D domains.  相似文献   

17.
密闭腔体声-结构耦合系统的动力灵敏度分析   总被引:5,自引:0,他引:5  
以密闭空腔为对象,开展了声-结构耦合系统的动力分析和灵敏度计算,为系统性态优化设计提供理论和算法基础。分别把结构和声场进行离散化,推导了声-结构耦合系统的有限元方程,求解了耦合系统的频率和声压级响应。在此基础上,以结构尺寸为设计变量,计算了耦合系统的固有频率和声压级响应的灵敏度,解决了声-结构耦合系统动力灵敏度的数值算法问题。  相似文献   

18.
A technique for dimensional reduction of nonlinear delay differential equations (DDEs) with time-periodic coefficients is presented. The DDEs considered here have a canonical form with at most cubic nonlinearities and periodic coefficients. The nonlinear terms are multiplied by a perturbation parameter. Perturbation expansion converts the nonlinear response problem into solutions of a series of nonhomogeneous linear ordinary differential equations (ODEs) with time-periodic coefficients. One set of linear nonhomogeneous ODEs is solved for each power of the perturbation parameter. Each ODE is solved by a Chebyshev spectral collocation method. Thus we compute a finite approximation to the nonlinear infinite-dimensional map for the DDE. The linear part of the map is the monodromy operator whose eigenvalues characterize stability. Dimensional reduction on the map is then carried out. In the case of critical eigenvalues, this corresponds to center manifold reduction, while for the noncritical case resonance conditions are derived. The accuracy of the nonlinear Chebyshev collocation map is demonstrated by finding the solution of a nonlinear delayed Mathieu equation and then a milling model via the method of steps. Center manifold reduction is illustrated via a single inverted pendulum including both a periodic retarded follower force and a nonlinear restoring force. In this example, the amplitude of the limit cycle associated with a flip bifurcation is found analytically and compared to that obtained from direct numerical simulation. The method of this paper is shown by example to be applicable to systems with strong parametric excitations.  相似文献   

19.
The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.  相似文献   

20.
The dynamic interaction problems of three-dimensional linear elastic structures witharbitrary shaped section embedded in a homogeneous,isotropic and linear elastic half spaceunder dynamic disturbances are numerically solved.The numerical method employed is acombination of the time domain semi-analytical boundary element method(SBEM)usedfor the semi-infinite soil medium and the semi-analytical finite element method(SFEM)used for the three-dimensional structure.The two methods are combined throughequilibrium and compatibility conditions at the soil-structure interface.Displacements,velocities,accelerations and interaction forces at the interface between undergroundstructure and soil medium produced by the diffraction of wave by an underground structurefor every time step are obtained.In dynamic soil-structure interaction problems,it isadvantageous to combine the SBEM and the SFEM in an effort to produce an optimumnumerical hybrid scheme which is characterized by the main advantages of the two methods.The  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号