首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
在B3LYP/6-311+ +G(2d,2p)水平上,优化得到硝基甲烷CH3NO2的10种异构体和23个异构化反应过渡态,并用G2MP2方法进行了单点能计算.根据计算得到的G2MP2相对能量,探讨了CH3NO2势能面上异构化反应的微观机理.研究表明,反应初始阶段的CH3NO2异构化过程具有较高的能垒,其中CH3NO2的两个主要异构化反应通道,即CH3NO2→CH3ONO和CH3NO2→CH2N(O)OH的活化能分别为270.3和267.8 kJ/mol,均高于CH3NO2的C-N键离解能.因而,从动力学角度考虑, CH3NO2的异构化反应较为不利.  相似文献   

2.
CF3O2自由基和NO反应机理的理论研究   总被引:1,自引:0,他引:1  
用密度泛函理论(DFT)的B3LYP方法, 分别在6-31G、6-311G、6-311+G(d)基组水平上研究了CF3O2自由基和NO反应机理. 研究结果表明, CF3O2自由基和NO反应存在三条可行的反应通道, 优化得到了相应的中间体和过渡态. 从活化能看, 通道CH3O2+NO→IM1→TS1→IM2→TS2→CF3O+ONO的活化能最低, 仅为70.86 kJ•mol-1, 是主要反应通道, 主要产物是CF3O和NO2. 而通道CH3O2+NO→IM1→TS3→CF3ONO2和CH3O2+NO→TS4→IM3→TS5→IM4→TS6→CF3O+NOO的活化能较高, 故该反应难以进行.  相似文献   

3.
苯甲醛肟偶极互变反应的理论研究   总被引:2,自引:0,他引:2  
研究了苯甲醛肟Z构型和E构型两种异构体与相应偶极体的3条互变反应途径:(1)单分子内质子转移反应,质子由肟羟基转移至邻位的氮上,过渡态为三角形结构,反应能垒较高;(2)二聚体内的质子互换反应,质子分别从一个肟羟基转移到另一个肟的氮上,过渡态为六元环结构,能垒较低,理论反应速度较大,但平衡常数较小;(3)肟羟基与甲醇的质子互换反应,过渡态具有五元环结构,能垒和反应速度介于上述两者之间.结果表明,在3条反应途径上,Z构型和E构型均有类似的过渡态,Z构型有利于偶极体存在.在室温下主要通过二聚体内质子交换进行互变反应,实际体系中由于偶极体不断被消耗,反应可以持续进行.  相似文献   

4.
陈界豪  王艳  冯文林 《化学学报》1999,57(9):974-980
用从头算的方法在6-31G水平上研究了3-羟基-3-甲基-2-丁酮(1)和苯甲酰甲酸甲酯(2)热分解反应的机理。结果是:前一反应是经历五元环过渡态到达氢键中间体,它接着直接分解成乙醛的异构体和丙酮,最后乙醛的异构体异构化成乙醛;后一反应经历六元环过渡态形成中间体1(INT1),中间体1(INT1)直接分解成中间体2(INT2)和甲醛,中间体2(INT2)经过第二个过渡态分解成苯甲醛的异构体和一氧化碳,最后苯甲醛异构体异构化成苯甲醛。其中氢迁过程是反应的速控步骤。在MP~2/6-31G//HF/6-31G+ZPE水平上,对应于这两个反应速控步骤的活化位垒分别是251.42kJ/moL和247.94kJ/mol。采用传统过渡态理论计算了两反应的热反应速率常数,理论的计算结果与实验值吻合较好。  相似文献   

5.
溶液中甲醇和二氯亚砜的化学反应   总被引:2,自引:0,他引:2  
用B3LYP方法和SCIPCM模型(模拟溶剂效应)研究了甲醇和二氯亚砜在两种非极性(ε<15)和两种极性(ε>15)溶剂中的反应(最终产物为氯代甲烷和二氧化硫). 反应过程由反应(1)和反应(2)组成, CH3OS(O)Cl是反应(1)的主要产物和反应(2)的反应物. 反应(2)有“前面取代”(经过渡态TS3f)和“背后取代”(先经CH3OS(O)Cl的电离, 再经过渡态TS3b)两种机理. 计算表明, 在气相和四种溶剂中反应(1)和(2)都是放热反应, 反应(1)具有相同的反应途径(经过渡态→中间体→过渡态), 溶剂的极性对反应(2)有很大的影响. 在气相和非极性溶剂中, TS3f的能量比(CH3OSO++Cl-)离子对(中间体IM2)的能量低, 反应(2)应为前面取代机理; 在极性溶剂中, IM2和TS3b的能量都比TS3f低, 反应(2)应为背后取代机理.  相似文献   

6.
CH3O2·+ClO气相反应的密度泛函理论研究   总被引:1,自引:1,他引:1  
用密度泛函方法在CCSD(T)/ 6-311++G// B3LYP/ 6-311G**水平上研究了气相反应CH3O2*+ClO的反应机理.得到了不同能量产物的可能的反应通道,获得反应势能面.整个反应过程为多通道反应,经过多个步骤完成,共找到7个中间体和10个过渡态,产物1CH3OCl+3O2(P1)和1 CH2O+1HOOCl(P4)为能量较低产物,通道1a:R→IM1→TS1/ 3→IM3→P1,4a:R→IM1→TS1/ P4→P4和4b:R→IM2→TS2/ P4→P4为较为可行的反应通道.  相似文献   

7.
采用密度泛函方法B3LYP/6-311+G(d, p)和耦合簇方法CCSD/6-311+G(d, p)研究了BH2+与H2O的气相离子-分子反应机理. 优化得到了反应途径中各驻点的几何构型, 并采用内禀反应坐标法进行追踪. 从量子拓扑学的角度, 讨论了在反应过程中各化学键的变化. 反应(I)经历了一个四元环过渡态, 找到了这个反应的能量过渡态和两个结构过渡态.  相似文献   

8.
冀永强  宁玉玺  吉文欣  蔡杰 《化学学报》2009,67(19):2165-2170
采用量子化学从头算MP2方法在6-31G(d)基组水平上系统地研究了过氧仲丁基自由基内三个不同碳位上的氢原子向O—O基的端O转移的过渡态结构, 讨论了这些氢转移反应过程中相关化学键的变化, 并在此基础上进一步研究了氢转移产物解离的过渡态结构. 结果表明具有四元环、五元环、六元环结构的三个氢转移过渡态对应的氢转移反应位垒分别是195.86, 176.43, 122.49 kJ•mol-1; 相应的氢转移产物进一步解离的反应位垒分别是3.53, 126.23, 154.2 kJ•mol-1, 对应的最终产物分别为HO自由基和丁酮, HO2自由基和丁烯, HOOCHCH3和乙烯.  相似文献   

9.
用密度泛函理论考察了甲基咪唑和一系列的卤代烷烃(氯乙烷,氯丁烷,溴乙烷,溴丁烷)反应合成咪唑类离子液体的反应机理. 在B3LYP/6-31++G**//B3LYP/6-31G*基组水平上找到了两条反应路径:路径A(反应物→TS1→P1)和路径B(反应物→TS2→P2). 在路径A中, 卤素离子和咪唑环C2上的氢质子形成氢键;在路径B中, 卤素离子和咪唑环C5上的氢质子形成氢键. 计算发现, 氢键的形成在反应中起到了非常重要的作用, 特别是咪唑环C2上的氢质子在和卤素离子成氢键后形成了一个五员环结构的过渡态, 该过渡态能量较低. 经过渡态TS1的反应途径其活化能要低于经过渡态TS2的反应途径, 反应路径A为主要的反应通道. 计算结果表明, 经过渡态TS1的反应途径是一放热过程, 这和实验观察现象一致.  相似文献   

10.
李宗和  吴立明  刘若庄 《化学学报》1997,55(11):1061-1065
本文用从头计算法(UMP2/6-31G)对氟与二氟乙烷的与1位、2位碳相连的氢的抽提氢反应进行研究。CHF2CH3+F→CF2CH3+HF(R1), CHF2CH3+F→CHF2CH2+HF(R2)。在内禀反应坐标(IRC)的势能剖面基础上用传统过渡态、变分过渡态理论计算了上述两个反应的速率常数及比值, 获得了与实验相一致的结果。  相似文献   

11.
The potential energy surface information of the CH2CO + CN reaction is obtained at the B3LYP/6‐311+G(d,p) level. To gain further mechanistic knowledge, higher‐level single‐point calculations for the stationary points are performed at the QCISD(T)/6‐311++G(d,p) level. The CH2CO + CN reaction proceeds through four possible mechanisms: direct hydrogen abstraction, olefinic carbon addition–elimination, carbonyl carbon addition–elimination, and side oxygen addition–elimination. Our calculations demonstrate that R→IM1→TS3→P3: CH2CN + CO is the energetically favorable channel; however, channel R→IM2→TS4→P4: CH2NC + CO is considerably competitive, especially as the temperature increases (R, IM, TS, and P represent reactant, intermediate, transition state, and product, respectively). The present study may be helpful in probing the mechanism of the CH2CO + CN reaction. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

12.
The structures, stabilities and the isomerization reactions of CH3SO2 isomers in a doublet electronic state have been studied at B3LYP/6‐311+ +G (d,p), MP2/6‐311++G (d,p) and CCSD(T)/6‐311++G (d,p) levels. The three different levels of calculation give the similar results: thirteen minimum isomers were located and they were connected by eleven transition states. Among the thirteen isomers, cis‐CH3OSO, trans‐CH3OSO and CH3SO2 are the most stable species, and they should be detected easily in experiment. This is well consistent with the experimental result. These isomers could isomerize to each other by chemical bond vibration, chemical bond rotation and atom migration. The non‐planar ring structure transition state (STS), which was found in this paper, extended the concept of ring STS to the non‐planar systems.  相似文献   

13.
New experimental results were obtained for the mutual sensitization of the oxidation of NO and methane in a fused silica jet‐stirred reactor operating at 105 Pa, over the temperature range 800–1150 K. The effect of the addition of sulfur dioxide was studied. Probe sampling followed by online FTIR analyses and off‐line GC‐TCD/FID analyses allowed the measurement of concentration profiles for the reactants, stable intermediates, and final products. A detailed chemical kinetic modeling of the present experiments was performed. An overall reasonable agreement between the present data and modeling was obtained. According to the present modeling, the mutual sensitization of the oxidation of methane and NO proceeds via the NO to NO2 conversion by HO2 and CH3O2. The conversion of NO to NO2 by CH3O2 is more important at low temperatures (800 K) than at higher temperatures (850–900 K) where the production of NO2 is mostly due to the reaction of NO with HO2. The NO to NO2 conversion is favored by the production of the HO2 and CH3O2 radicals yielded from the oxidation of the fuel. The production of OH resulting from the oxidation of NO accelerates the oxidation of the fuel: NO + HO2 → OH+ NO2 followed by OH + CH4→ CH3. In the lower temperature range of this study, the reaction further proceeds via CH3 + O2→ CH3O2; CH3O2+ NO → CH3O + NO2. At higher temperatures, the production of CH3O involves NO2: CH3+ NO2→ CH3O. This sequence of reactions is followed by CH3O → CH2O + H; CH2O +OH → HCO; HCO + O2 → HO2 and H + O2 → HO2 → CH2O + H; CH2O +OH → HCO; HCO + O2 → HO2 and H + O2 → HO2. The data and the modeling show that unexpectedly, SO2 has no measurable effect on the kinetics of the mutual sensitization of the oxidation of NO and methane in the present conditions, whereas it frequently acts as an inhibitor in combustion. This result was rationalized via a detailed kinetic analysis indicating that the inhibiting effect of SO2 via the sequence of reactions SO2+H → HOSO, HOSO+O2 → SO2+HO2, equivalent to H+O2?HO2, is balanced by the reaction promoting step NO+HO2 → NO2+OH. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 406–413, 2005  相似文献   

14.
采用密度泛函理论B3LYP方法研究了SiH2自由基与HNCO的反应机理, 并在B3LYP/6-311++G**水平上对反应物、中间体、过渡态进行了全几何参数优化, 通过频率分析和内禀反应坐标(IRC)确定了中间体和过渡态. 为了得到更精确的能量值, 又用QCISD(T)/6-311++G**方法计算了在B3LYP/6-311++G**水平优化后的各个驻点的相对能量. 计算结果表明SiH2自由基与HNCO的反应有五条反应通道, 其中顺式反应通道SiH2+HNCO→IM3→ TS4→IM5→TS5→IM6→SiH2NH+CO反应能垒最低, 为主反应通道.  相似文献   

15.
Intramolecular H‐atom transfer in model peptide‐type radicals was investigated with high‐level quantum‐chemistry calculations. Examination of 1,2‐, 1,3‐, 1,5‐, and 1,6[C ? N]‐H shifts, 1,4‐ and 1,7[C ? C]‐H shifts, and 1,4[N ? N]‐H shifts (Scheme 1), was carried out with a number of theoretical methods. In the first place, the performance of UB3‐LYP (with the 6‐31G(d), 6‐31G(2df,p), and 6‐311+G(d,p) basis sets) and UMP2 (with the 6‐31G(d) basis set) was assessed for the determination of radical geometries. We found that there is only a small basis‐set dependence for the UB3‐LYP structures, and geometries optimized with UB3‐LYP/6‐31G(d) are generally sufficient for use in conjunction with high‐level composite methods in the determination of improved H‐transfer thermochemistry. Methods assessed in this regard include the high‐level composite methods, G3(MP2)‐RAD, CBS‐QB3, and G3//B3‐LYP, as well as the density‐functional methods B3‐LYP, MPWB1K, and BMK in association with the 6‐31+G(d,p) and 6‐311++G(3df,3pd) basis sets. The high‐level methods give results that are close to one another, while the recently developed functionals MPWB1K and BMK provide cost‐effective alternatives. For the systems considered, the transformation of an N‐centered radical to a C‐centered radical is always exothermic (by 25 kJ ? mol?1 or more), and this can lead to quite modest barrier heights of less than 60 kJ ? mol?1 (specifically for 1,5[C ? N]‐H and 1,6[C ? N]‐H shifts). H‐Migration barriers appear to decrease as the ring size in the transition structure (TS) increases, with a lowering of the barrier being found, for example when moving from a rearrangement proceeding via a four‐membered‐ring TS (e.g., the 1,3[C ? N]‐H shift, CH3? C(O)? NH..CH2? C(O)? NH2) to a rearrangement proceeding via a six‐membered‐ring TS (e.g., the 1,5[C ? N]‐H shift, .NH? CH2? C(O)? NH? CH3 → NH2? CH2? C(O)? NH? CH2.).  相似文献   

16.
The mechanism of the sulfur extraction reaction between singlet germylene carbene and its derivatives [X2Ge?C: (X = H, F, Cl, CH3)] and thiirane has been investigated with density functional theory, including geometry optimization and vibrational analyses for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by B3LYP/6‐311G(d,p) method. From the potential energy profile, it can be predicted that the reaction pathway of this kind consists two steps: (1) the two reactants firstly form an intermediate (INT) through a barrier‐free exothermic reaction; (2) the INT then isomerizes to a product via a transition state (TS). This kind reaction has similar mechanism, when the germylene carbene and its derivatives [X2Ge?C: (X = H, F, Cl, CH3)] and thiirane get close to each other, the shift of 3p lone electron pair of S in thiirane to the 2p unoccupied orbital of C in X2Ge = C: gives a pp donor–acceptor bond, leading to the formation of INT. As the pp donor–acceptor bond continues to strengthen (that is the C? S bond continues to shorten), the INT generates product (P + C2H4) via TS. It is the substituent electronegativity that mainly affects the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
利用从头算和量子拓扑方法讨论了CH2XH→CH3X (X=O, S, Se)异构化过程的反应机理. 着重从电子密度拓扑分析计算了反应进程中的各点, 讨论了反应进程中键的断裂和生成, 上述反应都经历了三元环过渡结构, 找到了这类反应的"能量过渡态"和"结构过渡态", 且结构过渡态均在能量过渡态之后出现. 三元结构过渡态结构出现的范围与反应热成正比.  相似文献   

18.
尚静  查东  李来才  田安民 《化学学报》2006,64(9):923-929
采用密度泛函理论的B3LYP方法, 在6-311++G(d,p)基组水平上研究了CH3自由基与HNCO的微观反应机理, 优化了反应过程中的反应物、中间体、过渡态和产物, 为了获得更精确的能量信息, 还计算了体系在反应途径上各驻点的能量. 振动分析和IRC分析结果证实了中间体和过渡态的真实性, 计算所得的键鞍点电荷密度的变化情况也确认了反应过程. 对于CH3自由基与HNCO反应, 找到了七条可行的反应通道, 对结果的分析表明: 通道CH3+HNCO→TS7→IM4→TS9→IM5, 控制步骤活化能最低, 是该反应的主要通道. 在该反应体系中质子迁移过程反应活化能不高, 也是能发生的.  相似文献   

19.
The thermal ion‐molecule reactions NiX++CH4→Ni(CH3)++HX (X=H, CH3, OH, F) have been studied by mass spectrometric methods, and the experimental data are complemented by density functional theory (DFT)‐based computations. With regard to mechanistic aspects, a rather coherent picture emerges such that, for none of the systems studied, oxidative addition/reductive elimination pathways are involved. Rather, the energetically most favored variant corresponds to a σ‐complex‐assisted metathesis (σ‐CAM). For X=H and CH3, the ligand exchange follows a ‘two‐state reactivity (TSR)’ scenario such that, in the course of the thermal reaction, a twofold spin inversion, i.e., triplet→singlet→triplet, is involved. This TSR feature bypasses the energetically high‐lying transition state of the adiabatic ground‐state triplet surface. In contrast, for X=F, the exothermic ligand exchange proceeds adiabatically on the triplet ground state, and some arguments are proposed to account for the different behavior of NiX+/Ni(CH3)+ (X=H, CH3) vs. NiF+. While the couple Ni(OH)+/CH4 does not undergo a thermal ligand switch, the DFT computations suggest a potential‐energy surface that is mechanistically comparable to the NiF+/CH4 system. Obviously, the ligands X act as a mechanistic distributor to switch between single vs. two‐state reactivity patterns.  相似文献   

20.
The potential energy surface (PES) of CH3SO radical with NO reaction has been studied at MP2/6-311G(2df, p) and QCISD/6-311G(2df, p) levels. Geometries of the reactants, transition states (TS) and products were optimized at B3LYP/6-311G (d,p) level. The geometries of the transition states were found for the first time. The calculated results show that the reaction can proceed via singlet-state or triplet-state PES. Because of the high energy barrier of triplet surface, the singlet surface reactions are dominant. The topological analysis of electron density shows that there are two kinds of structaral transition states (the bifurcation-type ring structure transition state and the T-shaped conflict structure transition state) in the titled reaction. The total electronic density of the reactants, TS and products and the spin electronic density on the triplet surface were also discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号