首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   8篇
物理学   8篇
  2023年   1篇
  2022年   2篇
  2018年   3篇
  2017年   2篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
针对增强型共栅共源(Cascode)级联结构和耗尽型AlGaN/GaN功率器件,利用60 MeV能量质子开展辐射效应研究.获得了经质子辐照后器件电学性能的退化规律,并与常规耗尽型HEMTs器件辐照后的电学性能进行了比较,发现增强型Cascode结构器件对质子辐照更加敏感,分析认为级联硅基MOS管的存在是其对质子辐照敏感的主要原因.质子辐照使硅基MOS管栅氧化层产生大量净的正电荷,诱导发生电离损伤效应,使其出现阈值电压负向漂移及栅泄漏电流增大等现象.利用等效(60 MeV能量质子,累积注量1×1012 p/cm2)剂量的60Co γ射线辐射器件得到电离损伤效应结果,发现器件的电学性能退化规律与60 MeV能量质子辐照后的退化规律一致.通过蒙特卡罗模拟得到质子入射在Cascode型器件内诱导产生的电离能损和非电离能损,模拟结果表明电离能损是导致器件性能退化的主要原因.  相似文献   
2.
The energy deposition and electrothermal behavior of SiC metal-oxide-semiconductor field-effect transistor(MOSFET)under heavy ion radiation are investigated based on Monte Carlo method and TCAD numerical simulation.The Monte Carlo simulation results show that the density of heavy ion-induced energy deposition is the largest in the center of the heavy ion track.The time for energy deposition in SiC is on the order of picoseconds.The TCAD is used to simulate the single event burnout(SEB)sensitivity of SiC MOSFET at four representative incident positions and four incident depths.When heavy ions strike vertically from SiC MOSFET source electrode,the SiC MOSFET has the shortest SEB time and the lowest SEB voltage with respect to direct strike from the epitaxial layer,strike from the channel,and strike from the body diode region.High current and strong electric field simultaneously appear in the local area of SiC MOSFET,resulting in excessive power dissipation,further leading to excessive high lattice temperature.The gate-source junction area and the substrate-epitaxial layer junction area are both the regions where the SiC lattice temperature first reaches the SEB critical temperature.In the SEB simulation of SiC MOSFET at different incident depths,when the incident depth does not exceed the device's epitaxial layer,the heavy-ion-induced charge deposition is not enough to make lattice temperature reach the SEB critical temperature.  相似文献   
3.
本文利用60 MeV质子束流,开展了NAND (not and) flash存储器的质子辐照实验,获取了浮栅单元的单粒子翻转截面,分析了浮栅单元错误的退火规律,研究了质子辐照对浮栅单元的数据保存能力的影响.实验结果表明,浮栅单元单粒子翻转截面随质子能量的升高而增大,随质子注量的升高而减小.浮栅单元错误随着退火时间的推移持续增多,该效应在低能量质子入射时更为明显.经质子辐照后,浮栅单元的数据保存能力有明显的退化.分析认为高能质子通过与靶原子的核反应,间接电离导致浮栅单元发生单粒子翻转,翻转截面与质子注量的相关性是因为浮栅单元单粒子敏感性的差异.质子引起的非电离损伤会在隧穿氧化层形成部分永久性的缺陷损伤,产生可以泄漏浮栅电子的多辅助陷阱导电通道,导致浮栅单元错误增多及数据保存能力退化.  相似文献   
4.
In order to accurately predict the single event upsets(SEU) rate of on-orbit proton, the influence of the proton energy distribution, incident angle, supply voltage, and test pattern on the height, width, and position of SEU peak of low energy protons(LEP) in 65 nm static random access memory(SRAM) are quantitatively evaluated and analyzed based on LEP testing data and Monte Carlo simulation. The results show that different initial proton energies used to degrade the beam energy will bring about the difference in the energy distribution of average proton energy at the surface and sensitive region of the device under test(DUT), which further leads to significant differences including the height of SEU peak and the threshold energy of SEU. Using the lowest initial proton energy is extremely important for SEU testing with low energy protons. The proton energy corresponding to the SEU peak shifts to higher average proton energies with the increase of the tilt angle, and the SEU peaks also increase significantly. The reduction of supply voltage lowers the critical charge of SEU, leading to the increase of LEP SEU cross section. For standard 6-transitor SRAM with bit-interleaving technology,SEU peak does not show clear dependence on three test patterns of logical checkerboard 55 H, all "1", and all "0". It should be noted that all the SEUs in 65 nm SRAM are single cell upset in LEP testing due to proton's low linear energy transfer(LET) value.  相似文献   
5.
In our previous studies, we have proved that neutron irradiation can decrease the single event latch-up(SEL) sensitivity of CMOS SRAM. And one of the key contributions to the multiple cell upset(MCU) is the parasitic bipolar amplification,it bring us to study the impact of neutron irradiation on the SRAM's MCU sensitivity. After the neutron experiment, we test the devices' function and electrical parameters. Then, we use the heavy ion fluence to examine the changes on the devices' MCU sensitivity pre-and post-neutron-irradiation. Unfortunately, neutron irradiation makes the MCU phenomenon worse.Finally, we use the electric static discharge(ESD) testing technology to deduce the experimental results and find that the changes on the WPM region take the lead rather than the changes on the parasitic bipolar amplification for the 90 nm process.  相似文献   
6.
The impact of ionizing radiation effect on single event upset(SEU) sensitivity of ferroelectric random access memory(FRAM) is studied in this work. The test specimens were firstly subjected to ~(60)Co γ-ray and then the SEU evaluation was conducted using ~(209)Bi ions. As a result of TID-induced fatigue-like and imprint-like phenomena of the ferroelectric material, the SEU cross sections of the post-irradiated devices shift substantially. Different trends of SEU cross section with elevated dose were also found, depending on whether the same or complementary test pattern was employed during the TID exposure and the SEU measurement.  相似文献   
7.
The synergistic effect of total ionizing dose(TID) on single event effect(SEE) in SiGe heterojunction bipolar transistor(HBT) is investigated in a series of experiments. The SiGe HBTs after being exposed to 60 Co g irradiation are struck by pulsed laser to simulate SEE. The SEE transient currents and collected charges of the un-irradiated device are compared with those of the devices which are irradiated at high and low dose rate with various biases. The results show that the SEE damage to un-irradiated device is more serious than that to irradiated SiGe HBT at a low applied voltage of laser test. In addition, the g irradiations at forward and all-grounded bias have an obvious influence on SEE in the SiGe HBT, but the synergistic effect after cutting off the g irradiation is not significant. The influence of positive oxide-trap charges induced by TID on the distortion of electric field in SEE is the major factor of the synergistic effect. Moreover, the recombination of interface traps also plays a role in charge collection.  相似文献   
8.
Since the displacement damage induced by the neutron irradiation prior has negligible impact on the performance of the bulk CMOS SRAM, we use the neutron irradiation to degrade the minority carrier lifetime in the regions responsible for latchup. With the experimental results, we discuss the impact of the neutron-induced displacement damage on the SEL sensitivity and qualitative analyze the effectiveness of this suppression approach with TCAD simulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号