首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31279篇
  免费   9622篇
  国内免费   1393篇
化学   37713篇
晶体学   275篇
力学   399篇
数学   1752篇
物理学   2155篇
  2023年   14篇
  2022年   9篇
  2021年   156篇
  2020年   1238篇
  2019年   2587篇
  2018年   1009篇
  2017年   642篇
  2016年   3378篇
  2015年   3527篇
  2014年   3420篇
  2013年   4040篇
  2012年   2941篇
  2011年   2139篇
  2010年   2818篇
  2009年   2777篇
  2008年   2324篇
  2007年   1727篇
  2006年   1452篇
  2005年   1612篇
  2004年   1433篇
  2003年   1060篇
  2002年   690篇
  2001年   645篇
  2000年   420篇
  1999年   28篇
  1998年   33篇
  1997年   35篇
  1996年   17篇
  1995年   12篇
  1994年   17篇
  1993年   16篇
  1992年   6篇
  1991年   5篇
  1990年   9篇
  1989年   5篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1978年   3篇
  1977年   2篇
  1974年   2篇
  1937年   1篇
  1933年   1篇
  1923年   2篇
  1916年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
During metal welding and cutting, large amounts of particulate matter (PM) are produced that might represent a significant health risk for the exposed workers. In the present pilot study, we performed an elemental analysis of fine PM collected in a metal workshop. Also, elemental analysis of the hair and nail samples collected from workers exposed to the workshop dust and control group was done. Concentrations of 15 elements in PM were measured with X‐Ray Fluorescence (XRF) and Particle Induced X‐ray Emission (PIXE), whereas inductively coupled plasma mass spectrometry (ICP‐MS) was used to determine 12 elements in hair and nail samples. Mean 8‐hr concentrations of PM2.5, Fe, and Mn in the vicinity of welders were up to 1803, 860, and 30 μg/m3, respectively, whereas in the nearby city, daily PM2.5 concentrations are on average 11 μg/m3. We found that several elements, especially Fe and Mn, had substantially higher concentrations in hair and nail samples of exposed workers than in the control group, which indicates the accumulation of metals in workers' tissues, although limit values were not exceeded.  相似文献   
2.
In this article a coupled version of the improved divergence‐free‐condition compensated method will be proposed to simulate time‐varying geometries by direct forcing immersed boundary method. The proposed method can be seen as a quasi‐multi‐moment framework due to the fact that the momentum equations are discretized by both cell‐centered and cell‐face velocity. For simulating time‐varying geometries, a semi‐implicit iterative method is proposed for calculating the direct forcing terms. Treatments for suppressing spurious force oscillations, calculating drag/lift forces, and evaluating velocity and pressure for freshly cells will also be addressed. In order to show the applicability and accuracy, analytical as well as benchmark problems will be investigated by the present framework and compared with other numerical and experimental results.  相似文献   
3.
The neutral complex dichloro-{diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)-(4-trifluoro-methylphenyl)methyl]phosphonate} (p-cymene)-ruthenium(II) was encapsulated inside a self-assembled hexameric host obtained upon reaction of 2,8,14,20-tetra-undecyl-resorcin[4]arene and water. The formation of an inclusion complex was inferred from a combination of spectral measurements (MS, UV/Vis spectroscopy, 1H and DOSY NMR). The 31P and 19F NMR spectra are consistent with motions of the ruthenium complex inside the self-assembled capsule. Molecular dynamics simulations carried out on the inclusion complex confirmed these intra-cavity movements and highlighted possible supramolecular interactions between the ruthenium first coordination sphere ligands and the inner part (aromatic rings) of the capsule. The embedded ruthenium complex was assessed in the catalytic oxidation (using NaIO4 as oxidant) of mixtures of three arylmethyl alcohols into the corresponding aldehydes. The reaction kinetics were shown to vary as a function of the substrates’ size, with the oxidation rate varying in the order benzylalcohol >4-phenyl-benzylalcohol >9-anthracenemethanol. Control experiments realized in the absence of hexameric capsule did not allow any discrimination between the substrates.  相似文献   
4.
Spatial frequency shift(SFS) microscopy with evanescent wave illumination shows intriguing advantages, including large field of view(FOV), high speed, and good modularity. However, a missing band in the spatial frequency domain hampers the SFS superresolution microscopy from achieving resolution better than 3 folds of the Abbe diffraction limit. Here, we propose a novel tunable large-SFS microscopy, making the resolution improvement of a linear system no longer restricted by the detection numerical aperture(NA). The complete wide-range detection in the spatial frequency domain is realized by tuning the illumination spatial frequency actively and broadly through an angle modulation between the azimuthal propagating directions of two evanescent waves. The vertical spatial frequency is tuned via a sectional saturation effect, and the reconstructed depth information can be added to the lateral superresolution mask for 3D imaging. A lateral resolution of λ/9, and a vertical localization precision of ~λ/200(detection objective NA = 0.9) are realized with a gallium phosphide(GaP) waveguide. Its unlimited resolution enhancing capability is demonstrated by introducing a designed metamaterial chip with an unusual large refractive index. Besides the great resolution enhancement, this method shows better anti-noise capability than classical structured illumination microscopy without SFS tunability. This method is chip-compatible and can potentially provide a massproducible illumination chip module achieving the fast, large-FOV, and deep-subwavelength 3D nanoscopy.  相似文献   
5.
Molecular syntheses largely rely on time‐ and labour‐intensive prefunctionalization strategies. In contrast, C?H activation represents an increasingly powerful approach that avoids lengthy syntheses of prefunctionalized substrates, with great potential for drug discovery, the pharmaceutical industry, material sciences, and crop protection, among others. The enantioselective functionalization of omnipresent C?H bonds has emerged as a transformative tool for the step‐ and atom‐economical generation of chiral molecular complexity. However, this rapidly growing research area remains dominated by noble transition metals, prominently featuring toxic palladium, iridium and rhodium catalysts. Indeed, despite significant achievements, the use of inexpensive and sustainable 3d metals in asymmetric C?H activations is still clearly in its infancy. Herein, we discuss the remarkable recent progress in enantioselective transformations via organometallic C?H activation by 3d base metals up to April 2019.  相似文献   
6.
7.
The ability to optically reconfigure an existing actuator of a liquid crystal polymer network (LCN) so that it can display a new actuation behavior or function is highly desired in developing materials for soft robotics applications. Demonstrated here is a powerful approach relying on selective polymer chain decrosslinking in a LCN actuator with uniaxial LC alignment. Using an anthracene‐containing LCN, spatially controlled optical decrosslinking can be realized through photocleavage of anthracene dimers under 254 nm UV light, which alters the distribution of actuation (crosslinked) and non‐actuation (decrosslinked) domains and thus determines the actuation behavior upon order‐disorder phase transitions. Based on this mechanism, a single actuator having a flat shape can be reconfigured in an on‐demand manner to exhibit reversible shape transformation such as self‐folding into origami three‐dimensional structures. Moreover, using a dye‐doped LCN actuator, a light‐fueled microwalker can be optically reconfigured to adopt different locomotion behaviors, changing from moving in the laser scanning direction to moving in the opposite direction.  相似文献   
8.
9.
Exosomes are nanovesicles secreted by most cellular types that carry important biochemical compounds throughout the body with different purposes, playing a preponderant role in cellular communication. Because of their structure, physicochemical properties and stability, recent studies are focusing in their use as nanocarriers for different therapeutic compounds for the treatment of different diseases ranging from cancer to Parkinson's disease. However, current bioseparation protocols and methodologies are selected based on the final exosome application or intended use and present both advantages and disadvantages when compared among them. In this context, this review aims to present the most important technologies available for exosome isolation while discussing their advantages and disadvantages and the possibilities of being combined with other strategies. This is critical since the development of novel exosome‐based therapeutic strategies will be constrained to the effectiveness and yield of the selected downstream purification methodologies for which a thorough understanding of the available technological resources is needed.  相似文献   
10.
Sample preparation methods used for genetically modified organisms (GMOs) analysis are often time consuming, require extensive manual manipulation, and result in limited amounts of purified protein, which may complicate the detection of low‐abundance GM protein. A robust sample pretreatment method prior to mass spectrometry (MS) detection of the transgenic protein (5‐enolpyruvylshikimate‐3‐phosphate synthase [CP4 EPSPS]) present in Roundup Ready soya is investigated. Liquid chromatography‐multiple reaction monitoring tandem MS (nano LC‐MS/MS‐MRM) was used for the detection and quantification of CP4 EPSPS. Gold nanoparticles (AuNPs) and concanavalin A (Con A)‐immobilized Sepharose 4B were used as selective probes for the separation of the major storage proteins in soybeans. AuNPs that enable the capture of cysteine‐containing proteins were used to reduce the complexity of the crude extract of GM soya. Con A‐sepharose was used for the affinity capture of β‐conglycinin and other glycoproteins of soya prior to enzymatic digestion. The methods enabled the detection of unique peptides of CP4 EPSPS at a level as low as 0.5% of GM soya in MRM mode. Stable‐isotope dimethyl labeling was further applied to the quantification of GM soya. Both probes exhibited high selectivity and efficiency for the affinity capture of storage proteins, leading to the quantitative detection at 0.5% GM soya, which is a level below the current European Union's threshold for food labeling. The square correlation coefficients were greater than 0.99. The approach for sample preparation is very simple without the need for time‐consuming protein prefractionation or separation procedures and thus presents a significant improvement over existing methods for the analysis of the GM soya protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号