首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
C?H activation bears great potential for enabling sustainable molecular syntheses in a step‐ and atom‐economical manner, with major advances having been realized with precious 4d and 5d transition metals. In contrast, we employed earth abundant, nontoxic iron catalysts for versatile allene annulations through a unique C?H/N?H/C?O/C?H functionalization sequence. The powerful iron catalysis occurred under external‐oxidant‐free conditions even at room temperature, while detailed mechanistic studies revealed an unprecedented 1,4‐iron migration regime for facile C?H activations.  相似文献   

2.
To show the synthetic utility of the catalytic C?C activation of less strained substrates, described here are the collective and concise syntheses of the natural products (?)‐microthecaline A, (?)‐leubehanol, (+)‐pseudopteroxazole, (+)‐seco‐pseudopteroxazole, pseudopterosin A–F and G—J aglycones, and (+)‐heritonin. The key step in these syntheses involve a Rh‐catalyzed C?C/C?H activation cascade of 3‐arylcyclopentanones, which provides a rapid and enantioselective route to access the polysubstituted tetrahydronaphthalene cores presented in these natural products. Other important features include 1) the direct C?H amination of the tetralone substrate in the synthesis of (?)‐microthecaline A, 2) the use of phosphoric acid to enhance efficiency and regioselectivity for problematic cyclopentanone substrates in the C?C activation reactions, and 3) the direct conversion of serrulatane into amphilectane diterpenes by an allylic cyclodehydrogenation coupling.  相似文献   

3.
Significant progress has been made in the past decade regarding the development of enantioselective C?H activation reactions by desymmetrization. However, the requirement for the presence of two chemically identical prochiral C?H bonds represents an inherent limitation in scope. Reported is the first example of kinetic resolution by a palladium(II)‐catalyzed enantioselective C?H activation and C?C bond formation, thus significantly expanding the scope of enantioselective C?H activation reactions.  相似文献   

4.
Cationic N‐heterocycles are an important class of organic compounds largely present in natural and bioactive molecules. They are widely used as fluorescent dyes for biological studies, as well as in spectroscopic and microscopic methods. These compounds are key intermediates in many natural and pharmaceutical syntheses. They are also a potential candidate for organic light‐emitting diodes (OLEDs). Because of these useful applications, the development of new methods for the synthesis of cationic N‐heterocycles has received a lot of attention. In particular, many C?H activation methodologies that realize high step‐ and atom‐economies toward these compounds have been developed. In this review, recent advancements in the synthesis and applications of cationic N‐heterocycles through C?H activation reactions are summarized. The new C?H activation reactions described in this review are preferred over their classical analogs.  相似文献   

5.
Cyclopropane rings are a prominent structural motif in biologically active molecules. Enantio‐ and diastereoselective construction of cyclopropanes through C?H activation of arenes and coupling with readily available cyclopropenes is highly appealing but remains a challenge. A dual directing‐group‐assisted C?H activation strategy was used to realize mild and redox‐neutral RhIII‐catalyzed C?H activation and cyclopropylation of N‐phenoxylsulfonamides in a highly enantioselective, diastereoselective, and regioselective fashion with cyclopropenyl secondary alcohols as a cyclopropylating reagent. Synthetic applications are demonstrated to highlight the potential of the developed method. Integrated experimental and computational mechanistic studies revealed that the reaction proceeds via a RhV nitrenoid intermediate, and Noyori‐type outer sphere concerted proton‐hydride transfer from the secondary alcohol to the Rh=N bond produces the observed trans selectivity.  相似文献   

6.
Ni0‐catalyzed chemo‐ and enantioselective [3+2] cycloaddition of cyclopropenones and α,β‐unsaturated ketones/imines is described. This reaction integrates C?C bond cleavage of cyclopropenones and enantioselective functionalization by carbonyl/imine group, offering a mild approach to γ‐alkenyl butenolides and lactams in excellent enantioselectivity (88–98 % ee) through intermolecular C?C activation.  相似文献   

7.
The first enantioselective total syntheses of the tetrahydroxanthenone (?)‐blennolide C (ent‐ 4 ) and related γ‐lactonyl chromanone (?)‐gonytolide C (ent‐ 3 ) are reported. Key to the syntheses is an enantioselective domino‐Wacker/carbonylation/methoxylation reaction to set up the stereocentre at C‐4a. Various chiral BOXAX ligands were investigated, including novel (S,S)‐iBu‐BOXAX, and allowed access to chromane 8 in an excellent enantioselectivity of 99 %. The second stereocentre at C‐4 was established employing a diastereoselective Sharpless dihydroxylation. An extensive survey of (DHQ)‐ and (DHQD)‐based ligands enabled the preparation of both the anti‐isomer 14 a and the syn‐isomer 14 b in very good to reasonable selectivities of 13.7:1 and 1:3.7, respectively. While 14 a was further converted to ent‐ 3 and ent‐ 4 , 14 b was elaborated to syn‐acid 25 and 2′‐epi‐gonytolide C 28 .  相似文献   

8.
A cyclic (alkyl)(amino)carbene (CAAC) was found to undergo unprecedented rearrangements and transformations of its core structure in the presence of Group 1 and 2 metals. Although the carbene was also found to be prone to intramolecular C?H activation, it was competent for intermolecular activation of a variety of sp‐, sp2‐, and sp3‐hybridized C?H bonds. Double C?F activation of hexafluorobenzene was also observed in this work. These processes all hold relevance to the role of these carbenes in catalysis, as well as to their use in the synthesis of new and unusual main group or transition metal complexes.  相似文献   

9.
A general catalyzed direct C?H functionalization of s‐tetrazines is reported. Under mild reaction conditions, N‐directed ortho‐C?H activation of tetrazines allows the introduction of various functional groups, thus forming carbon–heteroatom bonds: C?X (X=I, Br, Cl) and C?O. Based on this methodology, we developed electrophilic mono‐ and poly‐ortho‐fluorination of tetrazines. Microwave irradiation was optimized to afford fluorinated s‐aryltetrazines, with satisfactory selectivity, within only ten minutes. This work provides an efficient and practical entry for further accessing highly substituted tetrazine derivatives (iodo, bromo, chloro, fluoro, and acetate precursors). It gives access to ortho‐functionalized aryltetrazines which are difficult to obtain by classical Pinner‐like syntheses.  相似文献   

10.
Enantioselective total syntheses of the Kopsia alkaloids (+)‐grandilodine C and (+)‐lapidilectine B were accomplished. A key intermediate, spirodiketone, was synthesized in 3 steps and converted into the chiral enone by enantioselective deprotonation followed by oxidation with up to 76 % ee. Lactone formation was achieved through stereoselective vinylation followed by allylation and ozonolysis. The total synthesis of (+)‐grandilodine C was achieved by palladium‐catalyzed intramolecular allylic amination and ring‐closing metathesis to give 8‐ and 5‐membered heterocycles, respectively. Selective reduction of a lactam carbonyl gave (+)‐lapidilectine B. The absolute stereochemistry of both natural products was thereby confirmed. These syntheses enable the scalable preparation of the above alkaloids for biological studies.  相似文献   

11.
Described is a practical and universal C? H functionalization of readily removable N‐benzyl and N‐allyl carbamates, with a wide range of nucleophiles at ambient temperature promoted by Ph3CClO4. The metal‐free reaction has an excellent functional‐group tolerance, and displays a broad scope with respect to both N‐carbamates and nucleophile partners (a variety of organoboranes and C? H compounds). The synthetic utility in target‐ as well as diversity‐oriented syntheses is demonstrated.  相似文献   

12.
The first enantioselective α‐allylation of aldehydes with terminal alkenes has been realized by combining asymmetric counteranion catalysis and palladium‐catalyzed allylic C? H activation. This method can tolerate a wide scope of α‐branched aromatic aldehydes and terminal alkenes, thus affording allylation products in high yields and with good to excellent levels of enantioselectivity. Importantly, the findings suggest a new strategy for the future creation of enantioselective C? H/C? H coupling reactions.  相似文献   

13.
The merger of cobalt‐catalyzed C?H activation and electrosynthesis provides new avenues for resource‐economical molecular syntheses, unfortunately their reaction mechanisms remain poorly understood. Herein, we report the identification and full characterization of electrochemically generated high‐valent cobalt(III/IV) complexes as crucial intermediates in electrochemical cobalt‐catalyzed C?H oxygenations. Detailed mechanistic studies provided support for an oxidatively‐induced reductive elimination via highly‐reactive cobalt(IV) intermediates. These key insights set the stage for unprecedented cobaltaelectro two‐fold C?H/C?H activation.  相似文献   

14.
The polyketide natural product cryptocaryol A is prepared in 8 steps via iridium catalyzed enantioselective diol double C?H allylation, which directly generates an acetate‐based triketide stereodiad. In 4 previously reported total syntheses, 17–28 steps were required.  相似文献   

15.
The recent advent of transition‐metal mediated C? H activation is revolutionizing the synthetic field and gradually infusing a “C? H activation mind‐set” in both students and practitioners of organic synthesis. As a powerful testament of this emerging synthetic tool, applications of C? H activation in the context of total synthesis of complex natural products are beginning to blossom. Herein, recently completed total syntheses showcasing creative and ingenious incorporation of C? H activation as a strategic manoeuver are compared with their “non‐C? H activation” counterparts, illuminating a new paradigm in strategic synthetic design.  相似文献   

16.
The first enantioselective Satoh–Miura‐type reaction is reported. A variety of C?N axially chiral N‐aryloxindoles have been enantioselectively synthesized by an asymmetric rhodium‐catalyzed dual C?H activation reaction of N‐aryloxindoles and alkynes. High yields and enantioselectivities were obtained (up to 99 % yield and up to 99 % ee). To date, it is also the first example of the asymmetric synthesis of C?N axially chiral compounds by such a C?H activation strategy.  相似文献   

17.
For the enantioselective and simultaneous analysis of lactate and 3‐hydroxybutyrate, a validated online two‐dimensional high‐performance liquid chromatography system using 4‐nitro‐7‐piperazino‐2,1,3‐benzoxadiazole as a fluorescent derivatization reagent has been developed. For the reversed‐phase separation in the first dimension, a Capcell Pak C18 ACR column (1.5 × 250 mm, particle size 3 μm) was used, and the target fractions were isolated by their hydrophobicity. In the second dimension, a polysaccharide‐coated enantioselective column, Chiralpak AD‐H (2.0 × 250 mm, 5 μm), was used. The system was validated by the calibration curve, intraday precision, interday precision, and accuracy using standards and real human samples, and satisfactory results were obtained. The present method was applied to human plasma and urine, and in the plasma, trace amounts of d‐ lactate (8.4 μM) and l‐ 3‐hydroxybutyrate (1.0 μM), besides high levels of l‐ lactate (860.9 μM) and d‐ 3‐hydroxybutyrate (59.4 μM), were successfully determined. In urine, trace levels of d‐ lactate (3.7 μM), d‐ 3‐hydroxybutyrate (2.3 μM), and l‐ 3‐hydroxybutyrate (3.3 μM) in addition to a relatively large amount of l‐ lactate (15.4 μM) were observed. The present online two‐dimensional high‐performance liquid chromatography system is useful for the simultaneous determination of all the lactate and 3‐hydroxybutyrate enantiomers in human physiological fluids, and further clinical applications are ongoing.  相似文献   

18.
Chiral polyfluoroarene derivatives are an important scaffold in chemistry. An unprecedented enantioselective C?H alkylation of polyfluoroarenes with alkenes is described. The reaction employs bulky chiral N‐heterocyclic carbene (NHC) ligands for nickel catalysts to enable exclusive activation of C?H bonds over C?F bonds and complete endo‐selective C?H annulation and excellent enantioselectivity. A wide variety of chiral fluorotetralins, compounds otherwise difficultly accessed but serve as important bioisosteric analogs of both tetralin and heterocycle units for drug design, are expediently synthesized from easily available substrates. To our knowledge, this is the first example of catalytic enantioselective C?H functionalization of polyfluoroarenes.  相似文献   

19.
The first enantioselective total synthesis of (?)‐aspidophylline A, including assignment of its absolute configuration has been accomplished. A key element of the synthesis is a highly enantioselective indole allylic alkylation/iminium cyclization cascade which was developed by employing a combination of Lewis acid activation and an iridium/ligand catalyst. This strategy relies on the direct use of 2,3‐disubstituted indoles with secondary allylic alcohols appended at C2 and heteronucleophiles appended at C3, indoles which are easily prepared from simple starting materials under C?H activation conditions.  相似文献   

20.
The first catalytic asymmetric cascade reaction of 7‐vinylindoles has been established by the rational design of such substrates. Cascade reactions with isatin‐derived 3‐indolylmethanols in the presence of a chiral phosphoric acid derivative allow the diastereo‐ and enantioselective synthesis of C7‐functionalized indoles as well as the construction of cyclopenta[b]indole and spirooxindole frameworks (all >95:5 d.r., 94–>99 % ee). This approach not only addresses the great challenge of the catalytic asymmetric synthesis of C7‐functionalized indoles, but also provides an efficient method for constructing biologically important cyclopenta[b]indole and spirooxindole scaffolds with excellent optical purity. Investigation of the reaction pathway and activation mode has suggested that this cascade reaction proceeds through a vinylogous Michael addition/Friedel–Crafts process, in which dual H‐bonding activation of the two reactants plays a crucial role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号