首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the study was to determine the mass, black carbon (BC), and elemental concentrations in fine particles (PM2.5) and their variations at two sites in Ouagadougou, the capital city of Burkina Faso. The weather situation in Ouagadougou during the field campaign was dominated by high pressure with variable cloudiness and no precipitation. Diurnal temperatures varied between 19 and 38 °C and relative humidity between 10 and 60%. Winds in Ouagadougou were generally coming in from the north, showing a diurnal pattern with gusts of up to 6 m/s during daytime, while evenings and nights were calmer with very stable atmospheric conditions. However, during part of this field campaign, a period of nighttime moderately stable atmospheric conditions occurred with increased wind speed and more easterly winds. Cyclones were used for the PM2.5 particle collection at both sites. The elemental analysis was done using energy dispersive x‐ray fluorescence (EDXRF) spectroscopy. Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr, and Pb were identified and quantified in most of the samples. The particle mass concentration was 27–164 µg/m3 while BC varied between 1.3 and 8.2 µg/m3. No influence of leaded gasoline was found. Soil dust was identified as a major component of the particles, which was confirmed by comparing with the elements in a soil sample. A significant difference in elemental, BC, and mass concentrations was seen between periods with very stable and moderately stable atmospheric conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
An intensive aerosol field campaign was carried out from 11 July to 11 August 2005 (dry season) at a rural site in Morogoro, Tanzania. The objectives were to determine the chemical composition of the atmospheric particulate matter (PM) and to examine to which extent the gravimetric PM mass can be explained by the measured aerosol components. Two low‐volume filter samplers were deployed, a PM10 filter holder with two Whatman QM‐A quartz fibre filters in series and a Gent PM10 stacked filter unit (SFU) sampler with coarse and fine Nuclepore polycarbonate filters. The samplers operated in parallel and a total of 51 parallel collections were made. All samples were analysed for the PM mass by weighing. Depending on the sampler type and/or collection substrate, further analyses were performed for 25 elements by particle‐induced x‐ray emission spectrometry, for major water‐soluble inorganic ions by ion chromatography, and for organic carbon and elemental carbon by a thermal—optical transmission technique. The PM10 mass, as derived from the SFU samples, was, on an average, 46 ± 12 µg/m3. Aerosol chemical mass closure calculations were made for this PM10 mass; eight aerosol components were considered and they explained 93% of the average PM10 mass. Organic matter (OM) and crustal matter were the dominant aerosol components; they accounted for, on an average, 44% and 33%, respectively, of the PM10 aerosol. The large contribution from OM is thought to originate mainly from the burning of biomass, especially of charcoal and agricultural residues. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
To characterize the elemental composition and source apportionment of aerosols in roadside area, particulate matters with aerodynamic diameter less than 2.5 μm (PM2.5) were collected in close proximity to a road from September 2017 to February 2018 in downtown Chengdu, China. An energy-dispersive X-ray fluorescence spectrometer was used to quantify elemental constituents (Al, Si, S, K, Mn, Fe, Ni, Cu, Zn, As, and Pb) of PM2.5 and was calibrated by in-house standards instead of commercial standards. The constructed calibration curves exhibited good linearity with all correlation coefficients greater than 0.98. The proposed calibration method proved to be reliable for the subsequent elemental analyses due to the satisfactory performance of u-score and precision that were validated by the certified reference materials (#2783). The results revealed that average PM2.5 concentrations of 92.2 ± 45.6 and 113.2 ± 60.3 μg/m3 were respectively observed in autumn and in winter. The major trace elements identified were K, S, and Fe and the minor contributions were from Cu and As. Most crustal elements showed decline in winter except for K, and most anthropogenic elements showed increase in winter except for Ni. Using rotation factor analysis and cluster analysis based on the elemental dataset, four potential sources were identified: road dust, vehicular emissions, coal and biomass burning, and industrial emissions. This research will provide a better understanding of traffic-related PM2.5 composition, and this can be used in the mitigation and prevention programs.  相似文献   

4.
Particulate matter is an important air pollutant, especially in closed environments like a tunnel. The aim of this study was to determine the mass, black carbon, and elemental concentrations of particulate matter of two size fractions at an underground tram station in Hammarkullen, Gothenburg, Sweden. Samples were collected during June 2007 using a dichotomous virtual impactor separating the sampled aerosol particles into coarse (PM(2.5–10)) and fine (PM2.5) fractions. To minimize the possible influence of waiting passengers, the platform for trams going towards the suburb Angered was chosen. The elemental analysis of the samples, collected on Teflon filters, was carried out using energy dispersive x‐ray fluorescence (EDXRF) spectrometry, resulting in concentrations of 14 elements in most of the samples. Principal component analysis (PCA) was applied to identify possible sources for the elements in the particles. Owing to the tunnel environment, the elemental difference between the fine and coarse particle fractions was not as large as that in similar particles collected under normal outdoor ambient conditions. Likewise, the influence of the local weather situation was not significant. Particle content from the tram traffic was identified by PCA, with Fe being the major element in both coarse and fine particles. The particle mass concentration was higher in the tunnel compared to the ambient concentration at the monitoring station Femman in downtown Gothenburg. In some days, the mass concentration exceeded the Swedish daily ambient air quality standard of 50 µg m?3, but it was lower than the limits in the environmental work act, 5 mg m?3. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Makkah city, Saudi Arabia, represents the most attractive place for religious tourism for Muslims all over the world. More than 15 million visitors come to the city per year, especially during Hajj (pilgrimage) and Ramadan seasons. Due to the lack of air quality assessment data for Makkah, measurement of different pollutants in Makkah is of great interest. In the present work, airborne particulate matter with aerodynamic diameter equal to or less than 2.5 µm (PM2.5) has been collected from two different sites in the city, namely the Grand mosque and Al‐Shraie, from December 2012 to January 2014 covering the different seasons of the year. The average mass concentrations at the sites are comparable, 48 ± 28 µg/m3 and 53 ± 27 µg/m3 for the Grand mosque and Al‐Shraie sites, respectively. For quantitative elemental analysis, energy dispersive X‐ray fluorescence (EDXRF) spectrometry was used. Twenty elements (Si, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Se, Br, Rb, Sr and Pb) were quantified in the PM2.5 samples. Fortunately, the obtained results of Pb and S are below the maximum allowance level of European commission for air quality. However, the average concentration of Ni in both sites is close to the maximum allowance level 20 ng/m3 and the Ni concentration reaches 25 ng/m3 at Grand mosque site during August 2013. Based on the Positive Matrix Factorization (PMF) analysis, four source factors were found, some signalling mixed sources, showing the main influence from mineral dust, anthropogenic/industrial sources and a marine source. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Micro synchrotron radiation X‐ray fluorescence (μ‐SRXRF) is a powerful spectroscopy technique that uses synchrotron radiation to induce X‐ray fluorescence in samples and provides exhaustive information on the micron and submicron scale. Among the major advantages of μ‐SRXRF spectroscopy are its nondestructive nature and that samples can usually be analyzed without pretreatment. At the ESRF (Grenoble, France) ID‐21 beamline, we examined PM10 samples collected at two sites in the Province of Trieste, Italy, in order to determine possible correlations among some low‐ to mid‐Z elements (S, Cl, K, Ca, Ti, V, Cr, Mn, and Fe), as well as investigated the possibility of using synchrotron radiation imaging techniques as a way to examine the granulometry of PM10 particles containing the various chemical elements. A consistent significant correlation between Ca and S has been found, which, coupled with the data obtained in a related study, indicates that a major part of the sulfate is present as CaSO4. Granulometry measurement via imaging techniques has shown that some elements such as Fe, Ca, and S are more amenable to this type of analysis than others. Additionally, the spatial homogeneity of a PM2.5 certified reference material (NIST SRM‐2783) has been investigated by analyzing four adjacent areas on the certified sample (total area 1 mm2). The certified reference material has shown a percentage relative standard deviation less than 7% for Al, Si, P, S, Cl, K, Ca, V, Cr, and Fe, and close to 17% for Ti and Mn. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Aerosol samples were collected at an urban background site in Skopje, Former Yugoslavic Republic of Macedonia, during four measurement campaigns from December 2006 to October 2007. An impactor was used to collect particulate matter (PM2.5) aerosol particles and the samples were analyzed for the concentrations of particulate mass, black carbon (BC), and 17 elements. The 12‐h average PM2.5 concentrations varied in the range 10–140 µg m?3 with the highest concentrations measured during wintertime pollution episodes and during the summer period. Pair‐wise correlations and crustal enrichment were studied and the data set was analyzed by factor analysis and positive matrix factorization. Major aerosol components were identified as mineral dust (main observed tracers Si, K, Ca, Ti, Fe, Sr, and Rb), combustion (BC, S, K, V, and Ni), traffic‐related aerosol (Pb and Zn), and secondary sulfate combined with mineral dust. Combustion sources dominated during wintertime and were likely due to heavy oil combustion, biomass burning, and other industrial activities within the city area. Mineral dust was observed throughout the year, but the concentrations peaked during the unusually hot and dry summer of 2007. It is concluded that Skopje suffers from serious air pollution due to central and residential heating, the transport sector, and industrial activities within the city, and contributions from mineral dust increase the PM2.5 concentrations under dry periods. Topography and meteorological conditions aggravate the problems and make the air quality comparable with the conditions in other highly polluted cities in Southern Europe and worldwide. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Due to the remarkable increasing of the mass concentrations of suspended particulate matter (SPM) as an air pollution indicator in Greater Cairo‐Egypt, regular sampling during autumn 2014 and winter 2014/2015 seasons has been performed from industrial and residential areas. It was found that the average mass concentrations of the SPM collected from residential and industrial areas are equal to 531 ± 198 and 912 ± 230 μg/m3, respectively. These quantities are much higher than the maximum allowance level, especially for the industrial area. By utilizing three secondary targets, energy dispersive x‐ray fluorescence working under vacuum environment was used for elemental analysis of 19 elements namely; Na, Al, Si, S, Cl, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, Pb, Se, Br, Rb, and Sr. The present optimized selective excitation energy dispersive x‐ray fluorescence analysis has considerably enhanced the analytical range with respect to our previous similar studies, including low Z elements such as Na, Al, S, and Cl and attaining lower detection limits in the range of ng/m3. Remarkable high elemental concentrations were determined for most of the detected elements from the industrial area samples, strongly indicating the influence of the industrial and anthropogenic activities. The average percentages of the mass concentration of the detected inorganic elements account only for 3.2% and 10.5% of the total mass concentration collected from the residential and industrial areas, respectively, thus directly indicating that the content of organic pollutants in SPM is the dominant contribution.  相似文献   

9.
《X射线光谱测定》2004,33(6):410-413
Trace elemental analysis of hair samples from subjects suffering with cervical cancer before radiation therapy and at successive intervals during radiation therapy was carried out using the PIXE technique. A 2 MeV proton beam was employed. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn and Pb were identified and their relative concentrations were estimated. The concentrations of Cl, K, Ca, Ti, Cr, Mn, Fe, Ni and Zn were found to be lower in hair samples of cervical cancer patients before radiation therapy than those from controls, whereas the concentration of Cu showed the opposite trend. The concentrations of Cl, K, Ca, Ti, Mn, Fe, Cu, Zn and Pb showed a definite trend of variation with successive intervals of radiation therapy, which indicates that these elements are affected during radiation therapy. The Cu/Zn ratio also decreases with successive radiation therapy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
This paper reports the effect of water vapour on particulate matter (PM) during the separate combustion of in situ volatiles and char generated from chromated-copper-arsenate-treated (CCAT) wood at 1300 °C. Combustion of in situ volatiles produces only PM with aerodynamic diameter?<1?µm (i.e., PM1), dominantly PM with aerodynamic diameter?<0.1?µm (i.e., PM0.1). Water vapour could significantly enhance the nucleation, coagulation and condensation of fine particles and reduce the capture of Na and K by the alumina reactor tube via reduced formation of alkali aluminates, leading to increases in both yield and modal diameter of PM0.1. Water vapour could also enhance char fragmentation hence increase the yield of PM with aerodynamic diameter between 1 and 10?µm (i.e., PM110) during char combustion. For trace elements, during in situ volatiles combustion, volatile elements (As, Cr, Ni, Cu and Pb) are only presented in PM1 and water vapour alters the particle size distributions (PSDs) but has little effect on the yields of these trace elements. During char combustion, As, Cr, Cu and Ni are present in both PM1 and PM110 while the non-volatile Mn and Ti are only present in PM110. Increasing water vapour content increases the yields of As, Cr, Cu, Ni, Mn and Ti in PM1-10 due to enhanced char fragmentation. During char combustion, water vapour also originates less oxidising conditions locally for enhancing As release, promotes the generation of gaseous chromium oxyhydroxides and inhabits the production of NiCl2 (g), leading to increased yields of As and Cr and decreased yield of Ni in PM0.1.  相似文献   

11.
Fine aerosol particles with an aerodynamic diameter equal or less than 2.5 μm (PM2.5) have been collected from two sites (residential and industrial) in Greater Cairo, Egypt and one site in Zarqa, Jordan. Based on the elemental quantitative analysis of PM2.5 using energy dispersive X-ray fluorescence with Mo secondary target, Pb concentrations increased remarkably during winter season regardless of the sampling location. Moreover, it reached the maximum concentration at the industrial location of Greater Cairo, Egypt, and it equals 415 ± 485 ng/m3. The remarkable high standard deviation is due to the significant variation of Pb concentration from time to time during that winter season. Depending on the energy dispersive X-ray fluorescence results, specific PM2.5 samples that have the highest concentration of Pb (two samples/location) have been selected for the X-ray absorption near edge structure measurements to estimate the oxidation state of Pb species. The X-ray absorption near edge structure measurements including 13 Pb references have been carried out at Pb-L3 absorption edge (13.039 keV) using fluorescence mode. It was shown that PM2.5 contains divalent and tetravalent lead in both industrial site in Greater Cairo, Egypt and urban site of Zarqa, Jordan although that of a residential area of Greater Cairo-Egypt is almost divalent lead.  相似文献   

12.
This paper presents the results of a new technique for in vivo energy dispersive X‐ray fluorescence (EDXRF) scan analysis, applied to human fingernails. The scan employs a specially designed EDXRF spectrometer, which allows a concentration profile of the elements detected in a human nail. In order to carry out this technique, a group of nail fragments taken from different people was analyzed. The elements S, Ca, Cu, Fe, Cu, Zn, and Pb were detected in most of the samples. A bidimensional (x, y) scan was also performed on a whole removed nail in which the 2D spatial distribution of the detected elements was observed. Significant differences in some of the detected elements were noted. Minimum time of average detection per element was determined, based on the EDXRF spectra of the nail fragment. The time required to obtain an in vivo element profile of a typical nail was thus determined, applying the same geometry and acquisition conditions for all cases. The dose that the person undergoing this type of EDXRF scan analysis would be exposed to was also determined. Exposure time does not exceed 15 s, and the calculated administered dose is in the surface nail region of 0.1 mGy/s. The results of this study demonstrate that it is possible to carry out an in vivo X‐ray fluorescence scan analysis. This information may be used in different fields of medicine, such as nutrition and toxicology, and in other areas that establish a correlation between the concentration of the detected elements and certain diseases. Nail and hair are known to be ‘accumulating tissues’ unlike bodily fluids. In some aspects, nail analysis can be equal to a blood test. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Laboratory-scale experiments pertinent to pulverised fuel (PF) combustion are often carried out in drop-tube furnaces (DTFs) at air-fuel equivalence ratios and cooling rate for quenching flue gas that are much higher than those in PF boilers. This paper reports the effect of flue gas cooling conditions on the properties of PM with aerodynamic diameter of <10 µm (PM10) from biomass combustion. This study considers four cooling rates (1000, 2000, 6000 and 20,000 °C/s) and two biomass feeding rates (0.05 and 0.25 g/min) that represents flue gases with significantly-different concentrations of inorganic vapours. The PSDs of PM10 have a bimodal distribution with a fine mode within PM with aerodynamic diameter of <1 µm (PM1) and a coarse mode within PM with aerodynamic diameter of 1–10 µm (PM1–10). All experimental conditions produce PM10 with similar PM1 and PM1–10 yields (~0.8 and ~1.6 mg/g_biomass, respectively) and similar coarse mode diameters (i.e. 6.863 µm). However, at a biomass feeding rate of 0.05 g/min, the fine mode diameter shifts from 0.022 to 0.077 µm when the cooling rate decreases from 20,000 to 1000 °C/s, indicating more profound heterogeneous condensation at a lower cooling rate. As the biomass feeding rate increases to 0.25 g/min, the fine mode diameter further shifts to 0.043 µm and at 20,000 °C/s but remained at 0.077 µm at 1000 °C/s though a clear shift of PSD to larger diameters is evident. These are attributed to enhanced heterogeneous condensation and coagulation of small particulates resulting from increased particle population density in hot flue gas. Chemical analyses show PM1 contains dominantly volatile elements (i.e. Na, K and Cl) while PM1–10 consists of mainly Ca. Similar trends are also observed for elemental PSDs and yields. It is also observed that slow cooling of hot flue gas leads to an increased yield of Cl in PM1–10 due to enhanced chlorination of Ca species.  相似文献   

14.
Aerosol sampling was carried out prior to and during an active construction work at the University of Jordan in Amman, Jordan. Elemental characterization for 60 PM2.5 samples was performed by particle-induced X-ray emission (PIXE) technique at the LABEC laboratory of INFN in Florence, Italy. Twenty three elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, Ba, and Pb) were detected, and their concentrations were assessed during three sampling periods, namely, “No Construction,” “Pouring Concrete,” and “Bleaching.” The results showed higher concentrations of soil-related elements and lower concentrations of anthropogenic-related elements during construction periods compared with their concentrations before construction. Soil-related elements showed very low enrichment factor (EF) and high correlation coefficients during all sampling periods. Anthropogenic-related elements were very much enriched and correlated only during the first sampling period “No Construction.”  相似文献   

15.
Trace elements in near‐ground atmospheric aerosols were investigated in Dar es Salaam, Tanzania. Particles were collected at two sites, one urban and one rural, during two months with different meteorological conditions. The samplers, dichotomous impactors, segregate the particles into two size fractions, fine (PM2.5, da < 2.5 µ m) and coarse (2.5 < da < 10 µ m). A sharp cyclone was used to sample finer particles (PM1, da < 1 µ m). Meteorological parameters were also examined at both sites. An EDXRF spectrometer, based on three‐axial geometry, was used for quantitative elemental analysis. Concentrations of elements heavier than phosphorus were determined. Also, the content of black carbon on the filters was measured with a reflectometer. The elemental concentrations were compared with respect to season and geographical location in the city. The levels of different species in Dar es Salaam were also compared with similar data from other African and European countries. This showed low values of Pb with respect to the size of the city and no legislation on the use of leaded petrol, that often is the main source of lead. High values of Cl were also found, as would be expected in a coastal city. The coarse particles in the air, originating from soil, had a different composition in Dar es Salaam than in Gaborone, Botswana, and the concentration of black carbon was higher than in other cities. On the basis of the data collected, source assignments were made and the following sources found; sea‐spray, soil, city road dust, biomass burning, industries and traffic. Comparing the concentrations of different elements in PM2.5 and PM1 revealed that black carbon, Zn, Pb, K and Br are present only in the smallest particles. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
The objective of the proposed work was to measure concentration of six essential elements, Ca, Cu, Fe, Mn, Sr, and Zn directly in whole blood. The adopted method is based on the theory of attenuation of low energy photons through the whole blood sample. Photons are completely absorbed at energy region approximately (25–100 keV), of K‐absorption edge for especially low‐Z elements and at L‐absorption edge especially for high‐Z elements. Children, adults, and old people from whom the blood samples are taken are considered as subjects in this study. The aim of this work is not to investigate any disease or specific elemental changes. Blood samples were irradiated by 22.0, 31.0, and 59.5 keV photons emitted by 108Cd (1.78 GBq), 133Ba (2.92 GBq), and 241Am (2.78 GBq) radioactive point source. A high resolution high pure germanium spectrometer has been used to detect low energy photons with low counts peaks. When compared to the existing data in literature, it has been found that the results obtained in this study agree well with those reported. There are many advantages of this technique over other methods such as being practical, inexpensive, non‐destructive, and can also do analysis fast. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The number of studies dealing with nanoparticles (NPs) and plants has increased. They subsidize the advances of agriculture in the 21st century; however, so far, beneficial as well as detrimental results have been reported. In this context, analytical tools for monitoring macronutrients and micronutrients in plants exposed to NPs, with adequate performance and low cost, are required. This work assesses the use of energy-dispersive X-ray fluorescence (EDXRF) spectrometry for elemental content evaluation in NP-containing agricultural samples. For Phaseolus vulgaris (common bean) seedlings treated with ZnO NP, CuO NP, and Fe3O4 NP, the limits of detection (LODs) were 0.4 mg kg−1 for Zn and Cu and 0.6 mg kg−1 for Fe after dry-ashing digestion, thus being suitable for NP oxide monitoring in seed priming. For submicron suspension fertilizers, Mn, Cu, and Zn were quantified as thin films after sample dilution. The LODs for Mn, Cu, and Zn were 0.09, 0.1, and 0.08 mg L−1, respectively. Finally, for P. vulgaris plants exposed to 300-nm ZnO NP, we monitored P, S, K, Ca, and Zn directly in powdered leaves, whose LODs ranged from 1.3 to 27 mg kg−1. No critical spectral interference was observed, and notable repeatability and suitable trueness were found in the cases of studies. EDXRF revealed itself a simple, fast, and reliable alternative to evaluate the elemental content in suspensions or the uptake of NP by plants.  相似文献   

18.
We measured the Raman spectra of ZnO nanoparticles (ZnO‐NPs), as well as transition‐metal‐doped (5% Mn(II), Fe(II) or Co(II)) ZnO nanoparticles, with an average size of 9 nm. A typical Raman peak at 436 cm−1 is observed in the ZnO‐NPs, whereas Zn1−xMnxO, Zn1−xFexO and Zn1−xCoxO presented characteristic peaks at 661, 665 and 675 cm−1, respectively. These peaks can be related to the formation of Mn3O4, Fe3O4 and Co3O4 species in the doped ZnO‐NPs. Moreover, these samples were analyzed at various laser powers. Here, we observed new vibrational modes (512, 571 and 528 cm−1), which are specific to Mn, Fe and Co dopants, respectively, and ZnO‐NPs did not reveal any additional modes. The new peaks were interpreted either as disorder activated phonon modes or as local vibrations of Mn‐, Fe‐ and Co‐related complexes in ZnO. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
《X射线光谱测定》2005,34(2):118-123
An air pollution campaign was carried out in the town of Nanyuki at four different sites during July and August 1999. Nanyuki is situated on the equator on the northwestern slope of Mount Kenya at about 1930 m above sea level. The intention of the project was to characterize aerosol elemental compositions in two size fractions, associated with specific natural and anthropogenic activities. A dichotomous impactor was used for sampling and an energy‐dispersive x‐ray fluorescence spectrometer was used for the analysis. Fourteen elements (Si, S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ga, Br, Rb, Sr and Pb) were analysed in all the samples. The concentration of Pb was highest at a site in the vicinity of open‐air vehicle garages. The four sites recorded high concentrations of fine S, Cl and K. Fine Zn and Br were also measured at all the sites. In the coarse size range, the concentrations of soil‐derived elements (Si, K, Ca and Fe) were dominant. The high concentration of coarse Cl was considered to be due to the contribution of sea salt and that of S to be a contribution of gas to particle conversion of SO2. The two elements S and Cl signified the influence of long‐distance transported aerosols. The comparatively high concentrations of fine Pb and Br signified the high rate of vehicle repairs, which is a major activity close to one of the sites. Generally, soil dust‐derived particles and those from biomass burning dominated the town aerosols. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The trace elements of scalp hair samples from ≥60‐year‐old dementia patients and normal persons have been studied by X‐ray absorption near‐edge spectroscopy (XANES) in fluorescent mode and wavelength‐dispersive X‐ray fluorescence spectrometry. Comparisons of hair trace element levels of age‐matched dementia patients and normal persons revealed significantly elevated amounts of calcium, chlorine and phosphorus in dementia patients relative to normal persons. The results of XANES measurements identify the chemical forms of deposited calcium and phosphorus in the hair samples of both dementia patients and normal persons to be calcium chloride (CaCl2) and phosphate (PO43?), respectively. The amount of sulfur in hairs of dementia patients was found to be not significantly different from that in normal persons. The sulfur K‐edge XANES spectra, however, show significantly higher accumulations of sulfur in the sulfate (SO42?) form in hairs of Alzheimer's disease and Parkinson's disease dementia patients. This study presents the possible roles of calcium, chlorine, phosphorus and sulfur in the etiology of dementia in elderly patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号