首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
半导体光催化技术可应用于环境中污染物的降解、转化和矿化以及太阳能的转换,是解决环境污染和能源短缺问题的一条有效途径。石墨相氮化碳(g-C_3N_4)与Bi系化合物复合材料因具有优异的光催化性能成为新型光催化材料的研究热点。本文论述了目前g-C_3N_4的主要制备方法,g-C_3N_4与Bi系复合材料的种类及其制备过程;同时围绕g-C_3N_4和Bi系复合催化材料在环境净化中的应用,包括对水体中污染物的降解及去除、光致细菌失活和光致水解产氢等,综述了国内外近年来的重要研究进展;以去除水环境中有机污染物为例,详细阐述了水体中有机污染物的光催化降解机理。最后,对g-C_3N_4与Bi系复合光催化材料的开发和应用前景进行了展望。  相似文献   

2.
石墨相氮化碳(g-C_3N_4)作为一种不含金属的有机高分子材料,因独特的能带结构、易于制备以及成本低廉而备受关注。但一些瓶颈问题仍然制约着其光催化活性。截至目前,人们已经尝试了许多方法来优化g-C_3N_4的光电性能,例如:元素掺杂、官能团改性以及构筑异质结等,而这些改性策略均与g-C_3N_4的表面行为密切相关。所以,g-C_3N_4的表面行为对其光催化性能起着关键作用。因此,本文对典型表面改性方法(表面功能化和构建异质结)制备的g-C_3N_4基光催化剂进行了全面综述,阐述了其光激发和响应机制,详细介绍了其可见光照射下光生载流子的转移路线和表面催化反应。此外,本文总结了表面改性g-C_3N_4基光催化剂在光催化制氢与CO_2还原方面的潜在应用。最后,根据已有研究,我们提出了今后有待进一步探索与解决的几方面问题。  相似文献   

3.
光催化技术被认为是解决能源和环境问题的最有前途方法之一.较高光催化活性的石墨相氮化碳(g-C_3N_4)及碳掺杂TiO_2(C-TiO_2)的制备及性能一直是环境光催化研究的热点,然而,单一光催化剂存在光生电子空穴易复合及量子效率低等问题.本课题组曾通过简单的水辅助煅烧法成功制备了纳米多孔g-C_3N_4,结果发现,多孔g-C_3N_4光催化活性较体相的明显提高,但光催化效率仍不够理想,原因是光生电子空穴复合较严重.传统的制备C-TiO_2的方法亦存在一些不足,如需要添加碳源或碳组分聚集体.我们采用原位掺杂的方法合成了含有一定氧空位和活性位的纳米碳改性的C-TiO_2,后辅以简单的化学气相沉积法构建了g-C_3N_4表面修饰的g-C_3N_4@C-TiO_2.结果表明,相比纯g-C_3N_4, TiO_2及C-TiO_2,g-C_3N_4@C-TiO_2具有更高的光催化活性;但其原因及碳掺杂态的影响尚不清楚.基于此,本文采用X射线光电子能谱技术(XPS)、透射电子显微镜(TEM)、电化学阻抗谱(EIS)、光致发光谱(PL)、电子顺磁共振技术(EPR)及理论计算等手段研究了g-C_3N_4@C-TiO_2光催化活性提高的原因和机理.XPS结果表明,随着碳含量的增加,间隙掺杂产生的O-C键的峰值强度先增大后趋于稳定,而晶格取代掺杂产生的Ti-C键的峰值强度逐渐增大.Ti-O峰的减少进一步证明了更多的碳取代了氧晶格的位置.随着碳掺杂量的增加,C-TiO_2的带隙逐渐减小,因而吸收边红移;同时, g-C_3N_4@C-TiO_2的光催化降解效率先升高后降低. g-C_3N_4@C-TiO_2对RhB(苯酚)光降解的最大表观速率常数为0.036(0.039)min-1,分别是纯TiO_2, 10C-TiO_2, g-C_3N_4和g-C_3N_4@TiO_2的150(139), 6.4(6.8), 2.3(3)和1.7(2.1)倍.g-C_3N_4通过π-共轭和氢键与C-TiO_2表面紧密结合,在催化剂中引入了新的非局域杂质能级和表面态,可以更有效地分离和转移光生电子,因而光催化活性增加.由此可见,碳掺杂状态和g-C_3N_4原位沉积表面改性对g-C_3N_4@C-TiO_2复合光催化剂性能的影响很大.  相似文献   

4.
二维石墨相氮化碳(2D g-C_3N_4)由于其特殊的π-π共轭结构,较窄的禁带宽度(2.7 e V)以及比表面积大、结构稳定、绿色无毒、来源广泛等特点,在光催化领域显示出巨大的应用潜力。然而,传统g-C_3N_4由于其可见光吸收差、光生载流子复合快、量子效率低等固有缺点导致其光催化性能较差,限制其应用。迄今为止,研究人员已经设计并开发了异质结构建、缺陷工程和形貌调控等多种策略来改善g-C_3N_4光催化活性。其中,缺陷工程通过调节g-C_3N_4的表面电子结构和能级结构来提高其光捕获、光生载流子分离-迁移和目标分子吸附/活化能力,从而改善其光催化能力。本文综述了非外源因素诱导(碳空位、氮空位等)以及外源因素诱导缺陷(掺杂和功能化)修饰g-C_3N_4,调控其光电子及光催化性能的最新研究进展,并介绍了2D g-C_3N_4在光催化净化大气方面的应用进展。最后,对g-C_3N_4在光催化领域的后续研究进行了展望。这篇文章的主要目的是为全面、深入地理解缺陷调控g-C_3N_4光催化性能的机制提供思路,以期更好地指导g-C_3N_4光催化剂的后续研究及其工商业应用开发。  相似文献   

5.
以三聚氰胺和六水合氯化钴为原料,一锅法制备Co_3O_4负载的多孔石墨相氮化碳(Co_3O_4/g-C_3N_4)复合光催化材料。采用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光光谱(PL)等手段对其结构和光学特性进行表征。以盐酸四环素(TC)为目标污染物,评价了不同负载量Co_3O_4/g-C_3N_4复合光催化剂的可见光催化性能。结果表明,所制备的Co_3O_4/g-C_3N_4复合光催化剂为多孔结构,其比表面积较大,并在可见光区域具有显著的吸收。利用原位生成的Co_3O_4纳米粒子在氮化碳表面形成异质结构,可有效转移光生载流子,降低光生电子-空穴的再结合率,从而提高光催化活性。并且存在最佳Co_3O_4复合量,当六水合氯化钴加入量为三聚氰胺的8%(w/w)时,所制备的复合光催化剂CoCN-8具有最佳的光催化性能。在可见光的照射下,60 min内可降解85%的TC,而同样条件下,纯g-C_3N_4仅降解23%的TC。  相似文献   

6.
以尿素为原料,通过高温热缩聚法制备出石墨相氮化碳(g-C_3N_4),并通过超声剥离,破坏g-C_3N_4层状结构,得到分散的片状结构。将不同量的硝酸银配成银氨溶液,抗坏血酸将其还原成银,并在搅拌下沉积在g-C_3N_4的表面,得到不同银负载量的Ag/g-C_3N_4。利用X-射线衍射仪、纳米粒度仪以及红外光谱仪对其进行表征。最后在紫外-可见光谱仪的测试下,通过降解甲基橙和罗丹明B,比较光催化剂对降解物的选择性降解。结果表明:在可见光的照射下,由90 mg硝酸银与100 mg g-C_3N_4制备的复合光催化材料表现出最佳的降解效果,远大于复合之前g-C_3N_4的降解效果。而且对罗丹明B的降解性大于甲基橙,表明光催化材料对降解物具有选择性。  相似文献   

7.
近年来,石墨型氮化碳(g-C_3N_4)作为一种n型半导体光催化剂材料,由于具有较好的热稳定性和化学稳定性,同时具有可调的带隙结构和优异的表面性质而备受人们关注.然而,传统的g-C_3N_4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷,制约着其光催化活性的进一步提高.因此,人们开发了多种技术对块体状g-C_3N_4材料进行改性,其中构建基于g-C_3N_4纳米薄片的异质结复合光催化材料被认为是强化g-C_3N_4载流子分离效率,进而提高其可见光催化活性的重要手段.BiOI作为一种窄带隙的p型半导体光催化剂,具有强的可见光吸收能力和较高的光催化活性,同时它与g-C_3N_4纳米薄片具有能级匹配的带隙结构.因此,基于以上两种半导体材料的特性,构建新型的BiOI/g-C_3N_4纳米片复合光催化剂材料不仅能够有效提高g-C_3N_4的可见光利用率,而且还可以在n型g-C_3N_4和p型BiOI界面间形成内建电场,极大促进光生电子-空穴对的分离与迁移效率.为此,本文通过简单的一步溶剂热法在g-C_3N_4纳米薄片表面原位生长BiOI纳米片材料,成功制备了新型的BiOI/g-C_3N_4纳米片复合光催化剂.利用X射线衍射仪(XRD),场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试.XRD,SEM和TEM结果显示,结晶完好的BiOI呈小片状均匀分散在g-C_3N_4纳米薄片表面;紫外漫反射光谱表明,纳米片复合材料的吸光性能较g-C_3N_4薄片有显著提升;瞬态光电流测试证明,复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中,BiOI/g-C_3N_4纳米片复合光催化剂显示出了优异的催化活性和稳定性,其光降解活性分别为纯BiOI和g-C_3N_4的34.89和1.72倍;自由基捕获实验发现,反应过程中的主要活性物种为超氧自由基(·O_2~-),即光生电子主导整个降解反应的发生.由此可见,强的可见光吸收能力和g-C_3N_4与BiOI界面处形成的内建电场协同促进了g-C_3N_4纳米薄片的电荷分离,进而显著提高了该复合材料的可见光催化降解活性.此外,本文初步验证了在BiOI/g-C_3N_4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的,而非"Z型转移"机制.  相似文献   

8.
江静  曹少文  胡成龙  陈春华 《催化学报》2017,(12):1981-1989
利用半导体光催化技术将太阳能转化为清洁化学能源是解决能源危机和环境问题的最有潜力的途径之一.过去几十年,许多半导体包括氧化物、硫化物和氮化物均表现出光催化活性.然而,半导体光催化的实际应用仍然受制于其较低的太阳能转化效率.解决上述问题的方法之一是发展高效的可见光光催化制氢材料.近年来,石墨相氮化碳(g-C_3N_4)作为一种聚合物半导体材料,受到了光催化研究人员的广泛关注.g-C_3N_4具有可见光吸收能力、合适的导带价带位置、良好的热稳定性和化学稳定性,且制备方法简单和结构易调控,是一种极具潜力的光催化制氢材料.然而g-C_3N_4仍然仅能吸收波长450 nm以下的光,且其光生电子和空穴极易复合,因而光催化制氢效率较低.目前,研究人员采用了多种改性方法来增强g-C_3N_4的光催化性能,其中通过元素掺杂进行能带结构调控是一种非常有效的策略.而碱金属原子(Li,Na和K)被认为可有效进入g-C_3N_4的内部结构,通过引入缺陷来拓宽g-C_3N_4的光吸收范围和提高光生电荷的分离效率.不过到目前为止,尚未见系统的比较研究来深入理解不同碱金属元素掺杂的g-C_3N_4在可见光光催化制氢中的性能差异.本文采用X射线衍射(XRD)、氮气吸附-脱附测试、紫外可见漫反射光谱(UV-visDRS)、时间分辨荧光光谱(TRPL)、X射线光电子能谱(XPS)、光电化学测试和光催化制氢测试等表征和测试手段比较研究了不同碱金属元素掺杂的g-C_3N_4在结构、光学性质、能带结构、电荷转移能力和光催化性能等方面的差异.XRD结果表明,碱金属掺杂可导致g-C_3N_4的层间距离增大,且碱金属原子半径越大,g-C_3N_4的层间距离越大.氮气吸附-脱附测试结果表明,碱金属掺杂可提高g-C_3N_4的比表面积,其中Na掺杂的最高.UV-vis DRS和XPS谱结果表明,依Li,Na,K的顺序,碱金属掺杂导致g-C_3N_4带隙逐渐变窄,使得可见光吸收能力逐渐增强,且其导带和价带位置逐渐下移.TRPL和光电化学测试结果显示,碱金属掺杂有效抑制了g-C_3N_4的光生载流子复合和促进了光生载流子的转移,其中Na掺杂的g-C_3N_4的光生载流子利用效率最高.可见光光催化制氢实验表明,碱金属掺杂显著提升了g-C_3N_4的光催化性能,其中以Na掺杂的g-C_3N_4性能最佳,其产氢速率(18.7mmol h–1)较纯的g-C_3N_4(5.0mmol h–1)可提高至3.7倍.由此可见,g-C_3N_4的掺杂改性是一个对其微结构和能带结构的优化调控过程,最终获得最优的光催化性能.  相似文献   

9.
热处理氧化石墨相氮化碳(g-C_3N_4)材料产生氮缺陷、提升其光催化制氢性能的研究备受关注,但其N空位浓度高且不可控、一定程度破坏g-C_3N_4晶体结构,降低g-C_3N_4的结晶度,导致光生电子-空穴对复合率高,致使其光催化制氢效率较低。基于上述问题,本研究以二氰二胺为前驱体制备了g-C_3N_4,与不同含量的尿素混合,在空气中加热快速热处理,通过X-射线衍射仪(XRD)、扫描电子显微镜(SEM)等测试手段,对其物相组成、微观形貌、光学吸收等进行了表征,在可见光条件下对样品进行了光催化制氢性能测试,研究了尿素的加入对热处理后g-C_3N_4材料的N空位浓度、结晶度及光催化制氢性能的影响。研究表明,尿素的加入降低了N空位的浓度,且提升了其结晶度。在优化的尿素添加量下,g-C_3N_4的可见光光催化制氢速率为6.5μmol·h-1,是没有添加尿素处理的样品的3倍。该研究结果表明,利用尿素原位分解产生的NH_3,可以抑制g-C_3N_4热处理过程中氮原子的氧化程度、实现调控N空位浓度,同时提高了结晶度,最终提升了其光催化制氢性能。  相似文献   

10.
C_3N_4是一种碳氮化合物,其中石墨相氮化碳(g-C_3N_4)复合结构材料作为一种具有类石墨结构的稳定化合物具有可以吸收太阳能、化学性质和光学性质稳定、有合适的氧化电势等优良性质,因此受到了研究者越来越广泛的关注.近年来,包括本课题组在内的国内外很多研究人员一直在积极探索g-C_3N_4及其功能复合物制备和应用的新途径,并取得了一系列有价值的研究成果.本文对g-C_3N_4复合结构材料的可控制备进行了系统的归纳和总结,也讨论了其在电化学析氢、光催化析氢、氧还原反应(ORR)中应用的最新进展,并对相关领域的发展趋势进行了展望.  相似文献   

11.
类石墨相氮化碳改性研究进展   总被引:1,自引:0,他引:1  
梁海欧  许瞳  白杰  李春萍 《化学通报》2022,85(1):72-77,51
类石墨相氮化碳(g-C3N4)是一种不含金属的半导体材料,它具有制备方法简单、合成原材料价格低廉、含量丰富,具有很好的物理化学性质及热稳定性等优点,并且其较窄的禁带宽度满足可以直接吸收一部分可见光的要求,这些特有的优势使其一度成为人们研究和关注的焦点.然而,它的比表面积小、光生电子和空穴复合率高以及可见光利用率不足等弊...  相似文献   

12.
《中国化学快报》2023,34(11):108306
Graphitic carbon nitride (g-C3N4) has been widely studied as a visible light responsive photocatalyst in recent years, due to its facile synthesis, low cost, high stability, and appropriate bandgap/band positions. In this review, we firstly introduce and compare various exfoliation approaches of bulk g-C3N4 into ultrathin g-C3N4 nanosheets. Then, many modification strategies of g-C3N4 nanosheets are also reviewed, including heterojunction construction, doping, defect control, and structure design. Thereafter, the charge transfer mechanism in g-C3N4 nanosheets based heterojunctions is present, e.g., Z-scheme, S-scheme and other forms. Besides, the photocatalytic applications of g-C3N4 nanosheets based photocatalysts are summarized including environmental remediation, energy generation and storage, organic synthesis, and disinfection. This review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4 nanosheets-based photocatalysts.  相似文献   

13.
As a two-dimensional (2D) material, polymeric carbon nitride (g-C3N4) nanosheet holds great potentials in environmental purification and solar energy conversion. In this review, we summarized latest progress in the optimization of photocatalytic performance in 2D g-C3N4. Some of the latest structural engineering methods were summed up, where the relevant influences on the behaviors of photoinduced species were emphasized. Furthermore, the construction strategies for band structure modulation and charge separation promotion were then discussed in detail. A brief discussion on the opportunity and challenge of 2D g-C3N4-based photocatalysis are presented as the conclusion of this review.  相似文献   

14.
Graphite-like carbon nitride (g-C3N4) based heterostrutures has attracted intensive attention due to their prominent photocatalytic performance. Here, we explore the g-C3N4/SnS2 coupling effect on the electronic structures and optical absorption of the proposed g-C3N4/SnS2 heterostructure through performing extensive hybrid functional calculations. The obtained geometric structure, band structures, band edge positions and optical absorptions clearly reveal that the g-C3N4 monolayer weakly couples to SnS2 sheet, and forms a typical van der Waals heterojunction. The g-C3N4/SnS2 heterostructure can effectively harvest visible light, and its valence band maximum and conduction band minimum locate in energetically favorable positions for both water oxidation and reduction reactions. Remarkably, the charge transfer from the g-C3N4 monolayer to SnS2 sheet leads to the built-in interface polarized electric field, which is desirable for the photogenerated carrier separation. The built-in interface polarized electric field as well as the nice band edge alignment implys that the g-C3N4/SnS2 heterostructure is a promising g-C3N4 based water splitting photocatalyst with good performance.  相似文献   

15.
Graphitic carbon nitride (g-C3N4), as a kind of polymeric semiconductor that has unique electronic structure and excellent chemical stability, has attracted increasing attention of researchers. Moreover, the raw materials for the preparation of g-C3N4 are various and easily accessible. All of these have provided favorable advantages for the fast development of g-C3N4. Compared to bulk g-C3N4, mesoporous g-C3N4 has more prominent natures, such as high specific surface area, large pore volume, and the increased amount of surface active sites. Therefore, great efforts have been devoted to develop mesoporous g-C3N4 (MCN). Up to now, many methods have been explored for the synthesis of MCN, such as hard-template method, soft-template method, template-free method, sol–gel method, and so on. Among these methods, the hard template method is used most widely. In this paper, the recent research on the synthesis of MCN was reviewed. In addition, the modifications to the obtained MCN, which lead to performance enhancement of the MCN for better applications, were also summarized.  相似文献   

16.
石墨相氮化碳量子点的制备及应用的研究进展   总被引:1,自引:0,他引:1  
王庆  陈宇飞  李萍  程健 《化学通报》2020,83(3):218-225,264
近年来,石墨相氮化碳(g-C3N4)因其稳定的物理化学性能和良好的生物相容性而受到研究者关注。与块体g-C3N4相比,石墨相氮化碳量子点(g-CNQDs)尺寸更小、荧光效率更高,且具有量子限域效应,因此拥有特殊的理化性质与更好的光催化性能。本文主要从g-CNQDs的制备策略和应用展开讨论,着重综述了微波辅助法、低温固相法、热化学腐蚀法和电化学刻蚀法制备g-CNQDs,以及g-CNQDs在催化剂、离子检测、生物传感与诊疗等领域的最新应用研究进展;指出了目前g-CNQDs在性质、制备和应用等研究方面的重点和难点;最后对g-CNQDs存在的问题和未来的发展方向作出了展望。  相似文献   

17.
Numerous approaches have been used to modify graphitic carbon nitride(g-C3N4) for improving its photocatalytic activity. In this study, we demonstrated a facial post-calcination method for modified graphitic carbon nitride(g-C3N4-Ar/Air) to direct tuning band structure, i.e., bandgap and positions of conduction band(CB)/valence band(VB), through the control of atmospheric condition without involving any additional elements or metals or semiconductors. ...  相似文献   

18.
朱东波  刘慧慧  邵翔 《化学通报》2017,80(11):1036-1042
石墨相氮化碳(g-C_3N_4)因为其特殊的层状结构及电子性质在催化和光催化领域里受到广泛关注和研究。本文以异丙醇及异丙醇-水混合溶液为介质对g-C_3N_4粉末进行超声液相剥离,并利用原子力显微镜详细表征了剥离后的溶液分散至云母、高定向热解石墨(HOPG)、Au(111)等不同衬底表面的结果。发现溶液经10h超声后,g-C_3N_4被剥离成尺寸约100nm左右的扁平颗粒,但无法形成完美的超薄层结构。这可能是由于经热聚合法合成的g-C_3N_4本身晶化程度较低所致。  相似文献   

19.
通过在三聚氰胺热分解过程中加入NaHCO3制备出具有氮缺陷的石墨相氮化碳(g-C3N4),利用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、N2吸附-脱附、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-vis DRS)和固体荧光光谱(PL)等方法对其进行表征,并在可见光(λ> 420nm)照射下,以水相中罗丹明B(RhB)的降解为模型反应,研究了该氮缺陷g-C3N4对有机污染物降解的光催化活性。结果表明,引入氮缺陷可以提高g-C3N4对可见光的吸收以及电子-空穴对的分离效率,进而提高g-C3N4的可见光催化活性。催化剂CNK0.005、CNK0.01和CNK0.05在30min内对RhB的降解率分别为79.8%、100.0%和87.6%;而在相同条件下,没有氮缺陷的g-C3N4对RhB的降解率仅为59.8%。  相似文献   

20.
As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4, (2) modification strategies of g-C3N4, (3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories: (1) Type I heterojunction, (2) Type II heterojunction, (3) p-n heterojunction, (4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号