首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   3篇
物理学   6篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Dong-Qing Li 《中国物理 B》2022,31(5):56106-056106
Three-dimensional (3D) TCAD simulations demonstrate that reducing the distance between the well boundary and N-channel metal-oxide semiconductor (NMOS) transistor or P-channel metal-oxide semiconductor (PMOS) transistor can mitigate the cross section of single event upset (SEU) in 14-nm complementary metal-oxide semiconductor (CMOS) bulk FinFET technology. The competition of charge collection between well boundary and sensitive nodes, the enhanced restoring currents and the change of bipolar effect are responsible for the decrease of SEU cross section. Unlike dual-interlock cell (DICE) design, this approach is more effective under heavy ion irradiation of higher LET, in the presence of enough taps to ensure the rapid recovery of well potential. Besides, the feasibility of this method and its effectiveness with feature size scaling down are discussed.  相似文献   
2.
The influences of total ionizing dose(TID) on the single event effect(SEE) sensitivity of 34-nm and 25-nm NAND flash memories are investigated in this paper. The increase in the cross section of heavy-ion single event upset(SEU) in memories that have ever been exposed to TID is observed, which is attributed to the combination of the threshold voltage shifts induced by γ-rays and heavy ions. Retention errors in floating gate(FG) cells after heavy ion irradiation are observed.Moreover, the cross section of retention error increases if the memory has ever been exposed to TID. This effect is more evident at a low linear energy transfer(LET) value. The underlying mechanism is identified as the combination of the defects induced by γ-rays and heavy ions, which increases the possibility to constitute a multi-trap assisted tunneling(mTAT) path across the tunnel oxide.  相似文献   
3.
为了提高纠错编码(ECC)的有效性,先进的静态随机存储器(SRAM)多采用位交错结构。但是,在没有物理版图信息的情况下,位交错设计使得从辐照测试数据中提取出多单元翻转(MCU)变得更加困难。运用Bi离子辐照带有ECC的65 nm SRAM器件,研究了该款器件在重离子辐照下的敏感性。为"伪多位翻转(FMBU)"以及MCU的数据分析提供了理论指导和帮助,完善了判别MCU的基本法则。除此之外,研究结果表明,ECC的汉明编码对于纳米器件的效果不够理想。在未来的空间应用中,需考虑更高层次的编码算法来抵抗单粒子翻转。In order to improve the robustness of error-correcting codes (ECC), modern static random access memory (SRAM) always use bit-interleaving structure. However, in the absence of physical layout information, the bit-interleaving design makes it more difficult to extract the multiple-cell upset (MCU) from the test data. In this paper, the sensitivity of Bi ion irradiation was investigated in a 65 nm technology SRAM with ECC. The experimental results provide a theoretical guidance and help for the fake multiple-bit upset (FMBU) and MCU data analyzing, which improve and perfect the basic rules extracting MCU from the test data. In addition, the results show that the performance of hamming encoding is not ideal in Nano scale SRAM. In the future of space applications, it is necessary to consider more advanced algorithms to against SEU.  相似文献   
4.
电离总剂量(TID)与单粒子效应(SEE)是纳米SRAM器件在航天应用中的主要威胁。随着CMOS工艺的进步,两种辐射效应在纳米SRAM器件中的协同效应出现了一些新现象,有必要进一步开展深入研究。利用γ射线以及不同种类重离子对两款纳米SRAM器件开展了辐照实验,研究了不同辐照参数、测试模式以及数据图形条件下,电离总剂量对单粒子翻转(SEU)敏感性的影响。研究结果表明,γ射线辐照过后,存储单元中反相器开关阈值减小,漏电流增大,导致SRAM存储单元抗翻转能力降低,SEU截面有明显增大;未观察到"印记效应",数据图形对测试结果没有明显影响;多位翻转(MBU)比例无明显变化。  相似文献   
5.
Three-dimensional integrated circuits(3D ICs)have entered into the mainstream due to their high performance,high integration,and low power consumption.When used in atmospheric environments,3D ICs are irradiated inevitably by neutrons.In this paper,a 3D die-stacked SRAM device is constructed based on a real planar SRAM device.Then,the single event upsets(SEUs)caused by neutrons with different energies are studied by the Monte Carlo method.The SEU cross-sections for each die and for the whole three-layer die-stacked SRAM device is obtained for neutrons with energy ranging from 1 MeV to 1000 MeV.The results indicate that the variation trend of the SEU cross-section for every single die and for the entire die-stacked device is consistent,but the specific values are different.The SEU cross-section is shown to be dependent on the threshold of linear energy transfer(LETth)and thickness of the sensitive volume(Tsv).The secondary particle distribution and energy deposition are analyzed,and the internal mechanism that is responsible for this difference is illustrated.Besides,the ratio and patterns of multiple bit upset(MBU)caused by neutrons with different energies are also presented.This work is helpful for the aerospace IC designers to understand the SEU mechanism of 3D ICs caused by neutrons irradiation.  相似文献   
6.
重点研究了磁性隧道结(MTJ)的电学性能受离子注量影响的物理规律。实验首次发现了高能Ta离子辐射损伤导致MTJ电学功能失效的现象,主要失效模式为:高、低电阻态失效,其中79.9%的功能失效为高电阻态失效。计算表明,单个10.9 MeV/u的Ta离子辐照引入的损伤无法导致MTJ宏观电学功能失效。结合理论计算与Monte Carlo模拟分析,MTJ中的绝缘势垒层与铁磁薄膜的损伤是出现高、低电阻态失效的内因。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号