首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   43篇
  国内免费   9篇
化学   8篇
晶体学   3篇
力学   1篇
综合类   1篇
物理学   80篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   7篇
  2013年   11篇
  2012年   9篇
  2011年   15篇
  2010年   12篇
  2009年   8篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
1.
以硝酸镍为镍源,硫酸钴、硫酸铜、硫酸铝为掺杂原料,采用超声波辅助沉淀法分别制备了单元和多元取代纳米氢氧化镍。用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、激光粒度仪(PSD)及电子显微镜(TEM、SEM)对样品晶相结构、形貌、粒度分布等进行了表征,研究了单元或多元取代对产物晶相及其结构稳定性的影响。结果表明,样品均为纳米级Ni(OH)2,随着掺杂元素种类的增多,其一次粒子变得细小,团聚加重,二次粒子粒径增大。样品中α-Ni(OH)2比例随取代元素增多而增大。相对于Co单元和Co/Cu双元取代,Co/Cu/Al三元取代的样品其晶相结构更稳定,在碱液中浸泡3周后仍为纯α-Ni(OH)2。在相同掺杂比例下,Cu取代比Co取代更有利于α-Ni(OH)2的生成,但Co取代的样品结构稳定性优于Cu取代的样品。  相似文献   
2.
"在Pt/Ti/SiO2/Si基片上用溶胶-凝胶法生长制备了PZT(Pb(Zr1-xTix)O3)复合梯度铁电薄膜. 薄膜最终结构由6层组成,"向上"梯度薄膜在Pt底电极上的第一层从PbZrO3开始,顶层是PZT(50/50),即第一层是PbZrO3,第二层PZT90/10 (10%Ti),第三层是PZT80/20,第四层PZT70/30,第五层PZT60/40,第六层PZT50/50.每一层与此相反的是"向下"梯度PZT薄膜.用X射线衍射、俄歇电子能谱和阻抗分析来研究梯度薄膜的结构与介电特性.600  相似文献   
3.
" 在Pt/Ti/SiO2/Si基片上用溶胶-凝胶法与快速退火工艺制备了300 nm厚的锆钛酸铅Pb(Zr0:95Ti0:05)O3 (PZT95/5)反铁电薄膜.结果显示600~700 ℃晶化处理的钙钛矿PZT95/5薄膜具有高度(111)取向生长特性.薄膜的电性能测量采用金属-铁电-金属电容器结构.在20 V电压作用下,600~700 ℃晶化处理的PZT95/5薄膜显示出饱和电滞回线.在1 kHz下,600、650和700 ℃晶化的薄膜介电常数与损耗分别为519与0.028、677与0.029、987  相似文献   
4.
石墨晶体结构遭到破坏时,总是碎化为微小尺寸的片状粉末.孤立的石墨烯片在其边缘存在大量的悬挂键,使得石墨烯片的能量较高,状态也不稳定.石墨烯片卷曲形成碳纳米管后,悬挂键减少,系统能量相应降低.另一方面,石墨烯片卷曲形成碳纳米管将产生相应的形变势能,形变势能的产生将抵消由于减少石墨烯片边缘上的悬挂键所带来的能量降低,使碳纳米管的能量可能高于石墨烯片的能量,导致碳纳米管结构的不稳定.在建立碳纳米管生成的力学模型并进行深入理论分析的基础上得出了碳纳米管可以稳定存在的最小直径约为0.32nm的结论.  相似文献   
5.
为了在透明基板上制备出导电性能良好的微电路,研究了窄脉宽激光正向和背向选择性去除金属薄膜制备的微结构形貌特征,开展了纳秒激光选择性去除Cu薄膜(厚度为150 nm)的实验和温度场仿真研究,揭示了正、背面去除的烧蚀机理和材料的喷射机制。实验结果表明,当激光脉冲能量为0.270~0.542μJ,扫描速度为2 mm/s时,激光诱导背向去除金属薄膜在加工质量方面优于正向加工,其去除几何精度高,轮廓边缘平整,几乎没有溅射。采用优化后的纳秒激光加工工艺参数,激光脉冲能量为0.403μJ,扫描速度2 mm/s,扫描线间距为3μm,制备出均匀分布的铜阵列图案。在相同参数下对玻璃基板上的铜薄膜背向选择性去除,得到具有良好导电性和粘附性的微电路。  相似文献   
6.
谢伟  王银海  胡义华  张军  邹长伟  李达  邵乐喜 《物理学报》2011,60(6):67801-067801
采用高温固相法制备了Ca,Ba共掺的Sr0.6Ba0.2Ca0.2Al2O4 ∶Eu2+0.01, Dy3+0.02和单掺Ba的Sr0.6Ba0.4Al2O4 ∶Eu2+0.01, 关键词: 长余辉 铝酸锶 稀土掺杂 陷阱能级  相似文献   
7.
陈东阁  唐新桂  贾振华  伍君博  熊惠芳 《物理学报》2011,60(12):127701-127701
采用传统的固相反应法,在1400–1500 ℃下烧结,制备得到Al2O3-Y2O3-ZrO2三相复合陶瓷.样品的结构、形貌和电性能分别用X射线衍射(XRD)、扫描电子显微镜(SEM)及介电谱表征.XRD表明此三相复合体系无其他杂相,加入Y2O3及ZrO2后使得Al2O3成瓷温度降低;SEM表明此体系晶粒直径为200–500 nm,并且样品随烧结温度的升高而变得更加致密,晶界更加清晰;介电损耗谱中出现峰值弛豫现象,根据Cole-Cole复阻抗谱得出其为非德拜弛豫. 关键词: 2O3-Y2O3-ZrO2三相陶瓷')" href="#">Al2O3-Y2O3-ZrO2三相陶瓷 介电弛豫 阻抗谱 热导率  相似文献   
8.
采用高温固相法制备系列红色荧光粉Naz Ca1-x-2y-zBiyMoO4 ∶ Eu3+x+y (y,z=0,x=0.24,0.26,0.30,0.34,0.38; x=0.30,y=0.01,0.02,0.03,0.04,0.05,0.06,0.07,z=0; x=0.30,y=0.04,z=0.38).用X射线粉末衍射(XRD)法测试了所制样品晶相结构.采用荧光光谱仪对样品的发光性能进行了表征,结果表明:当Eu3+单掺杂量浓度x=0.30时,荧光粉(Ca0.70 MoO4∶Eu3+0.30)的发光强度最强;当Eu3+-Bi3+共掺杂量浓度y=0.03时,电荷迁移带(CTB)强度达到最强,而对于Eu3+特征发射峰,当共掺杂浓度y<0.03时,位于393 nm处的激发峰强度比464 nm强,共掺浓度y>0.03时,464 nm峰比393 nm峰强,共掺浓度为y=0.04时,393和464 nm处两峰位置强度都达到最强.作为电荷补尝剂的Na2 CO3掺入上述荧光粉中后,荧光粉激发和发射强度明显地增强.结果表明,通过调节Bi3+ /Eu3+掺杂比例可以改变位于近紫外光393 nm和蓝光区464 nm处激发光相对强度.  相似文献   
9.
采用传统的高温固相法合成了一种新型的绿色荧光粉Sr3Y(PO4)3∶Ce3+,Tb3+,利用X射线衍射(XRD)和荧光光谱(PL)对该材料的晶体结构和光学性能进行表征。结果分析表明,制得样品的XRD图谱不含Sr3Y(PO4)3以外的杂峰,稀土掺杂并未改变基质的晶体结构,得到的样品为纯相的磷酸钇锶。从本文实验中明显观察到Sr3Y(PO4)3∶Tb3+的激发光谱和Ce3+的发射光谱在320~390nm有重叠,表明在Sr3Y(PO4)3基质中可存在从Ce3+到Tb3+的能量传递。在紫外光(315nm)激发下该荧光粉发射出了Ce3+的蓝光(320~420nm)和Tb3+的黄绿光(480~500nm)和(530~560nm),当Ce3+的浓度为7%,Tb3+的浓度由1%增大到50%时,通过Ce3+的4f→5d电子跃迁将能量传递到Tb3+,然后发生5 D4→7 Fj电子跃迁,该荧光粉发射光谱可由蓝光逐渐调节为黄绿光。本文绘制了Ce3+,Tb3+的能级和Sr3Y(PO4)3∶Ce3+,Tb3+荧光粉中的能量转移过程示意图,并详细阐述了由Ce3+到Tb3+的能量传递过程。通过对比Ce3+和Tb3+的发光强度以及由Ce3+到Tb3+能量转移效率的相对变化,可以得出,随着掺入的Tb3+浓度不断增加,Tb3+的发射强度(5 D4→7 Fj)和能量转移效率(Ce3+到Tb3+)也在增大,而Ce3+的发射强度却有了明显的下降。当Tb3+的浓度为50%时能量转移效率可高达80%。通过CIE色度图也可以看出,当Tb3+浓度不断增大,样品的色坐标从图中的蓝色区域移动到绿色区域。所以在紫外光激发下,Ce3+和Tb3+共掺Sr3Y(PO4)3可作为一种绿光荧光粉应用在白光LED或LCD背光源上。  相似文献   
10.
碳纳米管的稳定性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
石墨晶体结构遭到破坏时,总是碎化为微小尺寸的片状粉末.孤立的石墨烯片在其边缘存在大量的悬挂键,使得石墨烯片的能量较高,状态也不稳定.石墨烯片卷曲形成碳纳米管后,悬挂键减少,系统能量相应降低.另一方面,石墨烯片卷曲形成碳纳米管将产生相应的形变势能,形变势能的产生将抵消由于减少石墨烯片边缘上的悬挂键所带来的能量降低,使碳纳米管的能量可能高于石墨烯片的能量,导致碳纳米管结构的不稳定.在建立碳纳米管生成的力学模型并进行深入理论分析的基础上得出了碳纳米管可以稳定存在的最小直径约为0.32nm的结论. 关键词: 碳纳米管 稳定性 形变势能 键能  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号