首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9878篇
  免费   3058篇
  国内免费   7371篇
化学   11920篇
晶体学   719篇
力学   1307篇
综合类   238篇
数学   312篇
物理学   5811篇
  2024年   73篇
  2023年   391篇
  2022年   443篇
  2021年   555篇
  2020年   454篇
  2019年   583篇
  2018年   408篇
  2017年   591篇
  2016年   618篇
  2015年   666篇
  2014年   1298篇
  2013年   1133篇
  2012年   1022篇
  2011年   1079篇
  2010年   1032篇
  2009年   1046篇
  2008年   1081篇
  2007年   876篇
  2006年   1037篇
  2005年   980篇
  2004年   846篇
  2003年   783篇
  2002年   595篇
  2001年   496篇
  2000年   346篇
  1999年   340篇
  1998年   240篇
  1997年   217篇
  1996年   168篇
  1995年   172篇
  1994年   134篇
  1993年   112篇
  1992年   121篇
  1991年   116篇
  1990年   107篇
  1989年   84篇
  1988年   28篇
  1987年   11篇
  1986年   10篇
  1985年   11篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
纳米微晶的制备及其性质研究   总被引:2,自引:0,他引:2  
有机纳米微晶在纳米电子器件等方面具有应用前景, 已成为当前纳米科学的研究热点之一[1]. Nakanishi等[2,3]用再沉淀法制备出了有机纳米微晶, 但并未研究其生长机制和各种制备条件对生长过程的影响. 本文制备了不同粒径的纳米微晶, 研究了晶体结构和光谱性质的变化规律, 讨论了影响粒径大小和生长速率的因素, 为建立可行的有机微晶制备方法提供依据.  相似文献   
992.
在240℃水热体系中首次合成出系列纳米晶固溶体(CeO  相似文献   
993.
讨论了纳米科技在各个领域不同于常规材料的优越性和它在各个范畴内的研究热点 ,了解它的发展趋势。  相似文献   
994.
995.
温度的可视化实时监测,一直都是科学研究的重点方向。荧光传感是一种具有高灵敏度、快速响应、可视化等优点的半侵入式测温方法,在生物医药等领域已被广泛应用。然而,传统荧光探针容易受到外界条件波动的影响而产生误差。为解决这一问题,可以采用两组荧光检测信号构建比率型荧光探针,通过两组信号的相互校准提高检测的准确性。传统的比率荧光温度探针大多基于下转换荧光发射,这类探针通常由短波长光激发,对生物组织穿透性差且有一定伤害,还会受到生物组织自发荧光的干扰。频率上转换是由长波长激发,短波长发射的一种光致发光现象,由其构建的荧光探针可以克服传统下转换荧光探针的上述缺点。而基于三线态-三线态湮灭(TTA)机理的频率上转换发光体系,由光敏剂和湮灭剂的双分子体系共同构成,因而自身就同时具有上/下转换的发光特性,满足了构建比率型荧光探针的条件。然而目前,基于TTA上转换体系的比率型荧光温度探针还鲜见报导,已报导的工作中仍需要另外添加参比探针。仅通过TTA双分子体系构建的上/下转换比率型荧光温度探针仍然是一大挑战。本文通过将传统的TTA上转换体系(PdOEP/DPA)负载于由温敏型两亲性聚合物Pluronic-F127组装形成的胶束中,形成上转换纳米胶束温度探针。随着温度的升高,聚合物亲水链段水溶性下降,向胶束核心位置收缩,导致负载上转换分子的胶束内部空间体积减小,TTA分子间碰撞概率增大,上转换效率提高,上转换发光的强度也随之提高;与此同时,光敏剂的下转换磷光发射也会发生小幅度的下降。由此上/下转换两组荧光信号构成的比率荧光,可成功实现25~60 ℃范围内对温度的线性检测,并可通过肉眼观察到体系发光由紫红色向蓝紫色的转变,检测结果的重复性良好。TTA上转换分子通过被温敏聚合物胶束的包覆,既解决了在实际应用中探针水溶性差,以及上转换发光易被氧气淬灭的问题,还为上转换体系提供了温敏性质,实现了上转换发光对温度的精确响应。这种基于上转换纳米胶束的比率型荧光温度探针不仅制备方法简单,具有良好的生物相容性,且检测灵敏度高,可以人眼识别,无需外加参比,对生物体内温度在线监测的实现具有重要意义。  相似文献   
996.
用生物相容性好且毒性低的聚多巴胺对金纳米棒进行表面包覆, 利用其造影增强的功能, 将聚多巴胺包覆的金纳米棒应用于大鼠下颌下腺导管, 实现了下颌下腺造影成像.  相似文献   
997.
D-色氨酸为保护剂和还原剂, 采用水热法快速制备了具有强荧光的金纳米簇(D-Trp@AuNCs); 以其作为荧光探针, 建立了基于荧光猝灭的选择性高灵敏检测Fe3+的传感方法. 利用透射电子显微镜(TEM)、 紫外-可见光谱(UV-Vis)和红外光谱(IR)等手段对制备的金纳米簇进行了表征, 并利用荧光光谱研究了D-Trp@AuNCs的荧光性能. 结果表明, D-Trp@AuNCs具有较好的生物相容性, 其最大激发波长为370 nm, 最大发射波长为460 nm; 向金纳米簇溶液中加入Fe3+后, D-Trp@AuNCs的荧光发生明显猝灭, 其猝灭程度与Fe3+的浓度在0.3~500.0 μmol/L范围内呈现良好的线性关系, 检出限为33.1 nmol/L(S/N=3). 将该荧光探针用于实际水样中Fe3+的检测, 回收率为86.6%~106.5%.  相似文献   
998.
将五硼酸铵、 氨硼烷络合物和氧化镁混合, 球磨均匀后, 在1200 ℃及0.6 L/min流动氨气保护条件下退火6 h, 即可在氧化铝基片上收集到白色毛状产物. 采用X射线衍射(XRD), 红外光谱(FTIR)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 拉曼光谱(Raman)、 紫外-可见吸收光谱(UV-Vis)和荧光光谱(PL)对产物进行了表征. 结果表明, 样品呈一维线状分级结构, 长度大于5 mm, 中间为竹节状空心结构, 内部管径为50~350 nm, 外径范围为200~800 nm. 分级结构表面负载了大量氮化硼(BN)纳米薄片, 单个薄片厚度约为13 nm. 薄片弯曲褶皱, 相互交织, 构成1个氮化硼片层, 其厚度约为50~200 nm. UV-Vis和PL光谱测试结果表明, 氮化硼纳米管(BNNT)分级结构在紫外光材料领域具有一定的应用潜力, 且对亚甲基蓝具有良好的吸附能力(7 min即可吸附71%, 107 min时可吸附96%). 对比实验结果表明, BNNT的生长机理遵循气-液-固相(VLS)模型, 而表面负载的超薄BN片的生长机理遵循气-固相(VS)模型.  相似文献   
999.
以三氯乙烷和二氯乙烷为原料, 金属钠为还原剂, 在溶剂热条件(100~150 ℃)下使氯代乙烷中的碳氯键和碳氢键发生断裂制备了碳纳米球, 并对制备的碳纳米球进行了表征. X射线衍射结果表明, 样品为类石墨结构, 衍射信号宽且弱, 表明样品的结晶性较差; 拉曼光谱分析结果也表明样品具有较高的无序度. 样品的SEM与TEM分析结果表明, 在较高的反应温度下, 碳球具有更好的单分散性, 碳球的粒径随温度的升高而增大; 选区电子衍射结果表明碳球内部为无定形的类石墨结构. 以碳纳米球为负极材料的锂离子电池测试结果表明, 50周循环后比容量为941 mA·h/g, 库仑效率接近100%, 放电容量保持率为103.7%, 具有良好的循环稳定性. 测试了不同温度下制备样品的超级电容器性能, 发现120 ℃下制备的碳纳米球具有较高的比电容和较低的内阻值, 比电容高达130 F/g, 经过1000周循环充放电后比电容衰减比例低于14%, 具有较高的稳定性.  相似文献   
1000.
采用热分解法, 以柠檬酸钠和尿素为前驱体, 通过控制反应温度制备了不需要结合任何固体分散基质即可呈现明亮固态发光的碳纳米粒子(CNPs). 利用X射线衍射(XRD), 透射电子显微镜(TEM), X射线光电子能谱(XPS)、 紫外-可见吸收光谱(UV-Vis)和光致发光光谱(PL)等对CNPs的物相、 形貌和粒径、 表面基团及光学特性进行了表征. 结果表明, 该CNPs为无定形碳结构, 准球形形貌, 粒径分布在5~15 nm范围, 其表面存在C=O, C=N和O=C—N等基团. CNPs的水溶液和固体粉末在365 nm紫外光辐射下, 均呈现明亮的蓝绿色发光. 将该CNPs粉末用作荧光试剂可直接显现不同非渗透性客体表面的潜指纹(LFPs). 在365 nm紫外光激发下, CNPs粉末刷显后的LFPs细节特征清晰可辨, 强荧光背景客体表面的LFPs获得了高对比度的显现效果. 同时, 老化30 d的LFPs利用CNPs粉末也能够显现出可识别的指纹细节. CNPs发光粉末作为指纹试剂在刑侦领域具有潜在的应用前景.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号