首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   4篇
  国内免费   12篇
化学   12篇
数学   8篇
物理学   9篇
  2024年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2007年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
  1986年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1965年   1篇
排序方式: 共有29条查询结果,搜索用时 46 毫秒
1.
对于高温、高压、高应变速率加载条件下的材料冲击变形行为,动态晶体塑性模型能够直接反映晶体中塑性滑移的各向异性及其对温度、压力和微观组织结构的依赖性,因而广泛应用于材料的动态冲击力学响应、微观结构演化以及动态损伤破坏的模拟。本文综述了高压冲击下动态晶体塑性有限元的理论模型,主要包括变形运动学、包含状态方程的超弹性本构模型和晶体塑性本构模型,涉及位错滑移、相变、孪生等塑性变形机制,以及层裂、绝热剪切带等动态破坏方式。  相似文献   
2.
温度的可视化实时监测,一直都是科学研究的重点方向。荧光传感是一种具有高灵敏度、快速响应、可视化等优点的半侵入式测温方法,在生物医药等领域已被广泛应用。然而,传统荧光探针容易受到外界条件波动的影响而产生误差。为解决这一问题,可以采用两组荧光检测信号构建比率型荧光探针,通过两组信号的相互校准提高检测的准确性。传统的比率荧光温度探针大多基于下转换荧光发射,这类探针通常由短波长光激发,对生物组织穿透性差且有一定伤害,还会受到生物组织自发荧光的干扰。频率上转换是由长波长激发,短波长发射的一种光致发光现象,由其构建的荧光探针可以克服传统下转换荧光探针的上述缺点。而基于三线态-三线态湮灭(TTA)机理的频率上转换发光体系,由光敏剂和湮灭剂的双分子体系共同构成,因而自身就同时具有上/下转换的发光特性,满足了构建比率型荧光探针的条件。然而目前,基于TTA上转换体系的比率型荧光温度探针还鲜见报导,已报导的工作中仍需要另外添加参比探针。仅通过TTA双分子体系构建的上/下转换比率型荧光温度探针仍然是一大挑战。本文通过将传统的TTA上转换体系(PdOEP/DPA)负载于由温敏型两亲性聚合物Pluronic-F127组装形成的胶束中,形成上转换纳米胶束温度探针。随着温度的升高,聚合物亲水链段水溶性下降,向胶束核心位置收缩,导致负载上转换分子的胶束内部空间体积减小,TTA分子间碰撞概率增大,上转换效率提高,上转换发光的强度也随之提高;与此同时,光敏剂的下转换磷光发射也会发生小幅度的下降。由此上/下转换两组荧光信号构成的比率荧光,可成功实现25~60 ℃范围内对温度的线性检测,并可通过肉眼观察到体系发光由紫红色向蓝紫色的转变,检测结果的重复性良好。TTA上转换分子通过被温敏聚合物胶束的包覆,既解决了在实际应用中探针水溶性差,以及上转换发光易被氧气淬灭的问题,还为上转换体系提供了温敏性质,实现了上转换发光对温度的精确响应。这种基于上转换纳米胶束的比率型荧光温度探针不仅制备方法简单,具有良好的生物相容性,且检测灵敏度高,可以人眼识别,无需外加参比,对生物体内温度在线监测的实现具有重要意义。  相似文献   
3.
在YBCO堆叠磁体与永磁轨道构成的高温超导磁悬浮系统中,永磁轨道的振动通过电磁作用传递给YBCO堆叠磁体.本文通过实验研究了振动在YBCO堆叠磁体磁悬浮系统中的传递效率与基振加速度幅值和基振频率的关系.研究表明:在YBCO堆叠磁体磁悬浮系统中,YBCO堆叠磁体自由振动频率在9 Hz左右;一定低频条件下,振动的传递效率与基振加速度幅值呈正相关趋势,与基振频率呈负相关趋势.  相似文献   
4.
建立了RN(N≥3)上一类奇异非线性双调和方程正的径向对称整体解的存在定理,并给出了解的有关性质,推广了相关文献的结果.  相似文献   
5.
本文研究一类在球内的非线性椭圆奇异边值问题的正解的存在性,推广了H.Usami1989年所得到的部分结果  相似文献   
6.
空气敏感的金属有机化合物合成技术   总被引:1,自引:0,他引:1  
自然界存在的和人工合成的化合物中有许多是怕水怕氧的,它们在大气中的稳定性往往是以秒或分来计算的。合成和鉴定这类化合物必须使用特殊的仪器和操作技术。否则,即使  相似文献   
7.
上转换发光是一种将长波长的激发光转化为短波长发射的反斯托克斯发光现象,三线态-三线态湮灭上转换(TTA-UC)能够在较低密度能量下被激发,且上转换量子产率高,因此获得研究者们广泛关注。关于敏化剂分子结构与上转换发光性能相关性的研究一直是TTA-UC研究领域的重要热点,选择两种代表性的卟啉钯光敏剂[PdOEP-八乙基卟啉钯(Ⅱ)和PdBrTPP-四溴苯基卟啉钯(Ⅱ)]与蒽衍生物9,10-(4-羟甲基)苯基蒽p-DHMPA发光剂组合上转换体系作为研究模型,通过一系列合成工作获得材料分子后,进一步比较两种敏化剂的光谱性质与体系最终上转换性能之间关系。通过细致研究敏化剂和发光剂的荧光发射和寿命等光谱性质对敏化剂系间窜越,三线态-三线态能量转移及三线态-三线态湮灭等能量传递过程的影响后,发现在532 nm处的摩尔吸光系数PdBrTPP (10.8 cm-1·mmol-1)大于PdOEP (3.0 cm-1·mmol-1);三线态寿命PdBrTPP (173.13 μs)大于PdOEP (109.21 μs)。但与p-DHMPA配对时光敏剂与发光剂的三线态能级差ΔETT,PdOEP (0.140 eV)却高于PdBrTPP (0.062 eV),通过Stern-Volmer方程得到Stern-Volmer猝灭常数KSV和双分子猝灭常数kq值也是PdOEP略高,最终表现出上转换阈值PdOEP/p-DHMPA (22.40 mW·cm-2)小于PdBrTPP/p-DHMPA (29.78 mW·cm-2),上转换发光效率ΦUC,PdOEP/p-DHMPA (28.3%)大于PdBrTPP/p-DHMPA (26.8%)。因此,卟啉钯敏化剂的构效对三重态湮灭上转换发光效率影响最为重要的决定因素是敏化剂三线态高低。对于不同的敏化剂,在分子主体结构、摩尔吸光系数与三线态寿命等光谱参数差别不大的情况下,敏化剂的三线态能级越高,就将会具有更大的上转换发光效率。然而如果以总上转换能力指标来评价,PdBrTPP的共轭结构能够提升其在激发波长处吸收更多光子的能力,具有比PdOEP更高的摩尔吸光系数,造成其总上转换能力η比PdOEP高3.4倍。因此从上转换总效能指标来评价,通过敏化剂分子设计调控其在激发光波长处的摩尔吸光系数也不失为一种简单易行的方法。  相似文献   
8.
9.
丁二烯-[1,3]和水的亲核调聚反应产物2,7-辛二烯醇-[1](1)和1,7-辛二烯醇-[3](2)可作为有机合成有用的中间体。但目前这类调聚反应仍存在着催化效率不高,催化剂在使用和回收过程中易分解等问题。我们参考专利报导,通过调节乙酰丙酮钯-三苯膦-叔胺催化体系中的Pd:P:N克分子比提高了催化效率。并发现在从反应后得到的混合物中蒸出产物时,补加适量的配位体三苯膦,并采用分子蒸馏的方法,减少了催化剂在回收过程中的分解,增加了催化剂重复使用次数。  相似文献   
10.
弱光上转换是将低能量光子转换为高能量光子的过程,在三维荧光显微成像、太阳能电池、光催化等领域具有广泛的潜在应用,因而成为有机荧光材料领域的热点课题。目前基于三线态-三线态湮灭机制有机弱光上转换材料(TTA-UC)的研究已较为深入,有关发光机理及应用研究均有较多报道;然而针对另一种有机弱光上转换机理——基于单光子热带吸收的弱光上转换(OPA-UC)的研究目前还较为少见。氮杂蒽衍生物由于具有良好的结构刚性和平面性,高的荧光量子产率,是研究TTA-UC和OPA-UC两种有机上转换发光的理想模型分子结构。通过研究比较三种氮杂蒽衍生物:酚藏花红(PSF)、藏红T(SFT)、亚甲基紫(MTV)各自TTA-UC和OPA-UC的发光性能差异,分析探讨了分子结构对OPA-UC发光性能及TTA-UC敏化效率的构效关系。实验发现酚藏花红和藏红T由于具有较高的荧光量子产率,同时辐射衰减常数较大,其主要衰减过程为辐射衰减;而亚甲基紫具有较高的分子内电荷转移能力(ICT),因而非辐射衰减部分更多。研究三种分子的TTA-UC性能,发现亚甲基紫的三线态能级过低无法进行三线态-三线态能量转移过程,而藏红T由于拥有更高的三线态寿命而具有更高的上转换发光效率(9.69%),是酚藏花红体系(3.16%)的3倍。进一步研究酚藏花红和亚甲基紫的OPA-UC性能差异,发现相同浓度条件(10-3 mol·L-1)下亚甲基紫(0.12%)的OPA-UC发光效率相较于酚藏花红(0.059%)更高,且随着浓度的升高,亚甲基紫的OPA-UC发光增强效应更大。进一步研究表明,在TTA-UC发光过程中,敏化剂的敏化效率主要受分子三线态寿命以及系间窜跃能力影响,寿命越长,系间窜跃能力越强,敏化效率越高;而在OPA-UC发光过程中,湮灭剂分子的发光学率主要受ICT影响,ICT能力越大,分子发光效率越高。使用氮杂蒽分子廉价易得,对未来高性能TTA-UC和OPA-UC发光分子的设计具有一定的实际意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号