首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7991篇
  免费   3283篇
  国内免费   1024篇
化学   823篇
晶体学   74篇
力学   548篇
综合类   209篇
数学   4711篇
物理学   5933篇
  2024年   43篇
  2023年   124篇
  2022年   172篇
  2021年   175篇
  2020年   131篇
  2019年   188篇
  2018年   150篇
  2017年   196篇
  2016年   252篇
  2015年   266篇
  2014年   660篇
  2013年   500篇
  2012年   507篇
  2011年   596篇
  2010年   624篇
  2009年   715篇
  2008年   742篇
  2007年   644篇
  2006年   599篇
  2005年   636篇
  2004年   651篇
  2003年   498篇
  2002年   388篇
  2001年   381篇
  2000年   307篇
  1999年   297篇
  1998年   269篇
  1997年   255篇
  1996年   227篇
  1995年   191篇
  1994年   151篇
  1993年   144篇
  1992年   147篇
  1991年   147篇
  1990年   127篇
  1989年   105篇
  1988年   20篇
  1987年   26篇
  1986年   8篇
  1985年   13篇
  1984年   10篇
  1983年   6篇
  1982年   8篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
利用q-微积分的性质,得到时间测度q上的Gronwall不等式;并利用该推广的不等式分别讨论带有Riemann-Liouville和Caputo分数阶导数的q-微分方程的解对分数阶导数的阶数和初值的依赖性.  相似文献   
82.
刘雄伟  王晓 《大学数学》2015,31(2):53-55
从高等数学教材课后习题的偏导数恒等式变换求解,引导学生讨论一类偏微分方程的求解.在拓展课程内容、应用和常微分方程变量分离方法的基础上,巩固多元复合函数求导法则,常系数线性微分方程求解方法和傅里叶级数的相关理论与方法.  相似文献   
83.
在磁共振脉冲优化领域,优化脉冲普遍存在幅值过大的问题,这极大地限制了优化脉冲的使用范围。为了限制优化脉冲的幅值,扩大其应用范围,提出了一种基于L-BFGS-B数值算法的脉冲优化设计方法。首先基于Liouville-von Neuman方程,使用最优控制思想构建优化模型;然后使用L-BFGS-B算法,在限制幅值的条件下对优化模型进行数值迭代求解;最后以脉冲的激发效率以及激发轮廓的均匀性作为衡量优化脉冲优劣的标准对该方法进行仿真和实验验证。结果表明,采用该方法获得的优化脉冲在幅值被限制的前提下,仍能获得较传统磁共振脉冲更好的共振激发效果,进而增强信号的灵敏度,提高图像的质量。  相似文献   
84.
卢吴越  张永平  陈之战  程越  谈嘉慧  石旺舟 《物理学报》2015,64(6):67303-067303
采用快速热退火(rapid thermal annealing, RTA)法和脉冲激光辐照退火(laser spark annealing, LSA)法, 在n型4H-SiC的Si面制备出Ni电极欧姆接触. 经传输线法测得RTA样品与LSA样品的比接触电阻分别为5.2×10-4 Ω·cm2, 1.8× 10-4 Ω·cm2. 使用扫描电子显微镜、原子力显微镜、透射电子显微镜、拉曼光谱等表征手段, 比较了两种退火方式对电极表面形貌、电极/衬底截面形貌和元素成分分布、SiC衬底近表层碳团簇微结构的影响. 结果表明, 相比于RTA, LSA法制备出的欧姆接触在电极表面形貌、界面形貌、电极层组分均匀性等方面都具有明显优势, 有望使LSA成为一种非常有潜力的制备欧姆接触的退火处理方法.  相似文献   
85.
黄亮  李建远 《物理学报》2015,64(10):108202-108202
锂离子电池内部结构是一种复杂的分布参数系统, 如果为了降低计算难度而使用常微分方程描述锂离子电池, 可能会引入系统误差, 降低系统模型的可信度, 需要使用偏微分方程建立分布参数系统的精确模型. 本文提出了一种基于单粒子模型和抛物型偏微分方程的锂离子电池系统建模与故障监测系统设计方法, 当锂离子浓度实测值与理想值的残差大于预设门槛时判定分布参数系统处于故障状态. 通过一个仿真实例进行了锂离子电池系统建模和故障诊断实验, 实验证明基于单粒子模型和偏微分方程的锂离子电池故障监测系统具有更高的精确度和可信度.  相似文献   
86.
赵星  梅博  毕津顺  郑中山  高林春  曾传滨  罗家俊  于芳  韩郑生 《物理学报》2015,64(13):136102-136102
利用脉冲激光入射技术研究100级0.18 μm部分耗尽绝缘体上硅互补金属氧化物半导体反相器链的单粒子瞬态效应, 分析了激光入射器件类型及入射位置对单粒子瞬态脉冲传输特性的影响. 实验结果表明, 单粒子瞬态脉冲在反相器链中的传输与激光入射位置有关, 当激光入射第100级到第2级的n型金属-氧化物-半导体器件, 得到的脉冲宽度从287.4 ps增加到427.5 ps; 当激光入射第99级到第1级的p型金属-氧化物-半导体器件, 得到的脉冲宽度从150.5 ps增加到295.9 ps. 激光入射点靠近输出则得到的瞬态波形窄; 靠近输入则得到的瞬态波形较宽, 单粒子瞬态脉冲随着反相器链的传输而展宽. 入射器件的类型对单粒子瞬态脉冲展宽无影响. 通过理论分析得到, 部分耗尽绝缘体上硅器件浮体效应导致的阈值电压迟滞是反相器链单粒子瞬态脉冲展宽的主要原因. 而示波器观察到的与预期结果幅值相反的正输出脉冲, 是输出节点电容充放电的结果.  相似文献   
87.
利用脉冲激光沉积(PLD)法在玻璃基片上室温生长SnS薄膜,并在Ar气保护下分别在200,300,400,500,600℃对薄膜进行快速退火处理。利用X射线衍射(XRD)、拉曼光谱仪(Raman)、原子力显微镜(AFM)、场发射扫描电子显微镜( FE-SEM)、紫外-可见-近红外分光光度计( UV-Vis-NIR)、Keithley 4200-SCS半导体参数分析仪研究了快速退火温度对SnS薄膜的晶体结构、表面形貌以及有关光学性质和电学性能的影响。所制备的SnS薄膜样品沿(111)晶面择优取向生长,退火温度为400℃时的薄膜结晶质量最好。薄膜均具有SnS特征拉曼峰。随着退火温度的升高,薄膜厚度逐渐减小,而平均颗粒尺寸逐渐增大。不同退火温度下的SnS薄膜在可见光范围内的吸收系数均为105 cm-1量级,400℃时退火薄膜的直接带隙为1.92 eV。随着退火温度从300℃升高到500℃,电阻率由1.85×104Ω·cm下降到14.97Ω·cm。  相似文献   
88.
李名加  马宁  王朋  李黎 《强激光与粒子束》2015,27(4):045002-206
为了揭示十二烷基苯中绝缘材料沿面闪络的发展过程,并研究有效提高脉冲功率装置绝缘爬电距离的方法,通过实验对不同脉冲前沿、不同电场形式下有机玻璃和尼龙6在负脉冲电压下的沿面闪络电压进行了测量。结果发现:随着脉冲陡度的增加,沿面闪络电压增大;随着沿面距离的增大,闪络电压升高,但闪络场强降低;电场越不均匀,越容易发生闪络,并且在极不均匀场中,闪络距离较大时,闪络电压随沿面距离的增长趋势变缓,出现了明显的拐点。研究认为,液体介质中的沿面闪络与真空中的沿面闪络具有相似的闪络机制,沿面闪络是在气化的通道内完成的。  相似文献   
89.
基于绝缘微堆技术的直线加速器由于其能够实现较高的粒子加速梯度,尤其在质子加速及肿瘤治疗领域的优势得到高度关注。目前该种加速器处于研发阶段,有一系列技术和工程问题有待解决。介绍了课题组在过去的两年里围绕建立一台1 MeV质子注入器原型样机在固态脉冲功率系统、绝缘微堆及质子束源等方面取得的研究进展。实现了耐压梯度接近20 MV/m的环形绝缘微堆样品,样品内径30 mm,外径50mm,厚度15mm,基本达到设计要求;固态脉冲功率系统实现了光导开关多路稳定工作模式,开关直流偏置耐压达到20kV,采用激光二极管触发同步系统在15路同步时实现了低于1ns的抖动,输出300kV的电压脉冲,输出电压脉冲宽度10ns;进行了低能质子加速束流动力学的初步分析和模拟工作,模拟结果表明采用微堆结构可以实现质子束的有效加速和传输。  相似文献   
90.
为回旋行波管设计了全固态近方波Marx高压脉冲调制器,设计参数:输出电压70kV,输出电流15A,工作频率0~2kHz可调,脉宽200μs可调,功率容量可以达到百kW级。设计利用串联IGBT作为控制开关,利用FPGA通过光纤传输的方式对IGBT进行逻辑控制、电路保护和监测,补偿单元利用FPGA控制IGBT自动补偿的方式对顶部压降进行补偿,使得输出电压平顶度达到±1%。对电路各个部分进行仿真及测试。结果验证此设计方案的可行性,可以提高回旋管电源的稳定性和工作频率,减小调制器体积及维护成本,并为高压测试提供了实验基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号