首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18346篇
  免费   4709篇
  国内免费   3445篇
化学   2898篇
晶体学   140篇
力学   3863篇
综合类   767篇
数学   8609篇
物理学   10223篇
  2024年   133篇
  2023年   548篇
  2022年   614篇
  2021年   613篇
  2020年   552篇
  2019年   743篇
  2018年   493篇
  2017年   761篇
  2016年   826篇
  2015年   925篇
  2014年   1483篇
  2013年   1098篇
  2012年   1113篇
  2011年   1358篇
  2010年   1350篇
  2009年   1396篇
  2008年   1340篇
  2007年   1173篇
  2006年   1166篇
  2005年   1068篇
  2004年   1077篇
  2003年   967篇
  2002年   760篇
  2001年   692篇
  2000年   569篇
  1999年   499篇
  1998年   405篇
  1997年   442篇
  1996年   374篇
  1995年   411篇
  1994年   362篇
  1993年   252篇
  1992年   237篇
  1991年   219篇
  1990年   198篇
  1989年   193篇
  1988年   31篇
  1987年   21篇
  1986年   10篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1963年   1篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
S30408奥氏体不锈钢因其优异的力学性能和耐低温性能而被广泛用于制作LNG等低温罐车罐体的内容器。此类罐体的内容器在其支撑部位不但承受内压引起的恒定应力还会承受惯性载荷引起的交变应力,容易发生渐进的塑性应变累积即棘轮效应。但目前还缺乏有效预测S30408低温棘轮效应的本构描述。利用几种较为先进的本构模型对低温S30408奥氏体不锈钢棘轮应变进行模拟,发现这些本构模型存在循环初期过低预测和循环后期过高预测的缺点,并且这种过高预测会随着循环圈数的增加而增大。基于Ohno - Wang II模型,关联形变马氏体含量与各向同性强化与随动强化,并给出马氏体极限含量dL的演化规律,进而提出一种含马氏体相变的循环塑性本构模型。与其它模型相比,该模型能有效改善在循环初期预测值过低和后期预测值过高的情况,同时能够较好地预测循环加载过程中形变马氏体的含量。  相似文献   
42.
解析研究了面内电载荷和反平面机械载荷作用下压电体中纳米尺度圆孔边均布电可通多裂纹问题的断裂性能。基于Gurtin-Murdoch表面弹性理论,利用保角映射方法和复变弹性理论给出了裂纹尖端电弹场分布、电弹场强度因子及能量释放率的解析结果。阐述了无量纲电弹场强度因子、无量纲能量释放率的尺寸依赖效应,讨论了裂纹数量和缺陷几何参数对无量纲场强度因子和无量纲能量释放率的影响。结果表明:无量纲电弹场强度因子和无量纲能量释放率具有显著的尺寸依赖效应;考虑表面效应,孔径和裂纹长度相当时,电弹场强度因子达到最大;裂纹/孔径比对电弹场强度因子随裂纹数量变化的制约会随着裂纹数量的增加而逐渐消失;过大或过小的裂纹孔径比会削弱裂纹长度对能量释放率的影响。  相似文献   
43.
天然气水合物作为一种储量大、无污染的清洁能源近些年受到了广泛关注. 近20年来,中国进行了较大范围的陆海域天然气水合物储层勘探与储量预测.2017年,中国地质调查局牵头对南海神狐海域的天然气水合物进行了基于降压渗流原理的试验性开采.国内外已进行的水合物试采工程面临着气体产量低、出砂较多等问题,其最主要的原因之一是开发过程中沉积物内复杂多相渗流机理尚不明晰.本文综述了平行毛细管模型、Kozeny模型等广泛应用于天然气水合物开发渗流分析的理论模型,对比分析了水合物开发多尺度渗流过程模拟方法,简述了国内外含水合物沉积物渗透率测试、渗流过程中沉积物物性演变以及水合物开采室内模拟等方面的渗流实验进展,总结了矿场尺度的天然气水合物储层开采过程中产气数值模拟手段,展望了多相渗流模型、储层原位含水合物样品室内测试及结构与物性演化、矿场尺度数值模拟与水平井压裂技术等应用研究的未来方向与挑战.   相似文献   
44.
谢梅莹  习娟  吴林波 《应用力学学报》2020,(1):378-382,I0026,I0027
应用Hamilton原理建立了双路传力的无轴承旋翼运动方程。采用均匀入流模型,基于直升机飞行平衡条件,建立了无轴承旋翼柔性梁载荷的计算模型,并通过算例验证了模型的精度。利用该模型,研究了全机重心位置、机身气动阻力以及平尾安装角对柔性梁载荷特性的影响,给出了各因素对柔性梁载荷的影响趋势,得出了降低柔性梁载荷的方法。数值结果表明:2cm左右重心位置的变化能够引起9%~11%的柔性梁载荷变化量,15%气动阻力的增加会导致约9%的柔性梁载荷的增大;2°平尾安装角的变化引起约10%柔性梁载荷的变化量,3°平尾安装角的变化引起约26%柔性梁载荷的变化。  相似文献   
45.
朱强华  杨恺  梁钰  高效伟 《力学学报》2020,52(1):124-138
提出了一种基于特征正交分解(POD)和有限元法的瞬态非线性热传导问题的模型降阶快速分析方法, 建立了导热系数随温度变化的一类瞬态非线性热传导问题有限元格式的POD降阶模型. 在隐式时间推进方法的基础上有效结合单元预转换方法和多级线性化方法发展了一种加速求解瞬态非线性热传导降阶模型的新型计算方法,并通过二维和三维算例验证了该方法的准确性和高效性. 研究结果表明: (1)降阶模型解的均方根误差在经过初始时段轻微的脉动后稳定于0.01%以下, 而其计算效率比有限元全阶模型提高2$\sim $3个数量级, 并且自由度数量(DOFs)愈大提高的幅度也愈加显著; (2)新型算法解决了常规算法在计算非线性降阶模型时加速性能差的问题, 即使是在DOFs比较小的时候也能够明显提高计算效率; (3)常数边界条件下得到的POD模态可以用来建立相同求解域在各种复杂时变边界条件下的瞬态非线性热传导降阶模型, 并对其传热过程和温度场进行快速准确的分析与预测, 具有很好的工程应用价值.   相似文献   
46.
高温超导(HTS)带材的基带可以改变带材的磁场分布,从而影响到带材的交流损耗。从实验和数值分析两个角度计算了不同高温超导带材的自场损耗,并分析了不同基带对带材自场损耗的影响。利用不同高温超导带材制作了多个单层高温超导电缆模型,并从磁性基带的角度分析了各模型的交流损耗特性。结果显示非磁性基带不影响带材的交流损耗。对于超导电缆模型而言,当磁性基带位于模型外侧时,模型外部空间不存在损耗磁通。此外BSCCO模型和YBCO模型的交流损耗特性相似,NY模型和YN模型的损耗相比前两个模型偏大。尤其在低电流区域,YN模型的交流损耗最大。  相似文献   
47.
从在线Low-E玻璃光学机理出发,用椭圆偏振光谱仪对在线Low-E玻璃功能层和过渡层的可见-近红外波段的光学常数进行研究.测量了样品在三个不同入射角的椭偏参数,分别用Lorentz双振子模型和Cauchy模型来描述Low-E玻璃功能层和过渡层的光学色散特性.通过拟合椭偏参数获得在线Low-E玻璃的光学常数及每层膜厚度,并用扫描电镜对样品的膜厚进行表征.结果表明,Lorentz双振子模型和Cauchy模型能很好地解释在线Low-E玻璃的光学特性;同时,椭圆偏振法也为多层膜系统提供了一种测定光学常数和膜厚的可靠方法.  相似文献   
48.
研究了一类具有2个时滞的SLBRS计算机病毒模型的局部稳定性和局部Hopf分支. 以2个时滞的不同组合为分支参数,得到了模型的局部稳定性和局部Hopf分支存在的充分条件.利用中心流形定理和规范型理论研究了Hopf分支的方向和稳定性等性质.最后,利用仿真示例对理论分析结果的正确性进行了验证.  相似文献   
49.
针对有热再生式压缩空气除湿装置在再生及冷吹过程中产生气耗的缺点,运用喷射器及恒压变温吸附再生原理设计了一种零气耗空气除湿工艺流程。在搭建小型实验台的基础上,通过改变喷射器引射率进行实验研究三种工况条件下活性氧化铝的吸附再生性能。实验结果表明:实验全过程能够保持一个相对稳定且有效的恒压变温吸附再生条件,且出口空气露点达到生产要求;随着喷射率的降低,吸附剂再生效果逐渐下降,而吸附效果逐渐上升。引射率为0.5时的再生时间约为引射率0.75的1.85倍,再生速率约为0.51倍。而引射率0.33,引射率0.5的吸附效率分别为引射率0.75的1.04倍,1.11倍,吸附稳定时间1.11倍,2.22倍。  相似文献   
50.
应用一种基于时滞反馈的分支控制方法,对一类具有时滞的商业周期模型的Hopf分支进行了控制.以时滞作为分支参数,当时滞达到某个阈值时,无控系统失去稳定性,Hopf分支产生:将时滞反馈控制器引入无控系统,可以使Hopf分支延迟发生或消失.数值仿真的结果验证了该方法的有效性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号