首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   794篇
  免费   535篇
  国内免费   228篇
化学   227篇
晶体学   52篇
力学   63篇
综合类   22篇
数学   7篇
物理学   1186篇
  2024年   7篇
  2023年   35篇
  2022年   32篇
  2021年   37篇
  2020年   34篇
  2019年   31篇
  2018年   26篇
  2017年   42篇
  2016年   35篇
  2015年   54篇
  2014年   73篇
  2013年   49篇
  2012年   66篇
  2011年   55篇
  2010年   49篇
  2009年   59篇
  2008年   127篇
  2007年   48篇
  2006年   71篇
  2005年   55篇
  2004年   41篇
  2003年   68篇
  2002年   77篇
  2001年   32篇
  2000年   45篇
  1999年   48篇
  1998年   42篇
  1997年   28篇
  1996年   22篇
  1995年   23篇
  1994年   33篇
  1993年   20篇
  1992年   19篇
  1991年   19篇
  1990年   24篇
  1989年   16篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
排序方式: 共有1557条查询结果,搜索用时 31 毫秒
41.
中国散裂中子源(CSNS)靶站质子束窗位于环到靶站输运线(RTBT)与靶站交接面,起到隔离加速器高真空和靶站氦气环境的作用。随着束流功率提高,目前质子束窗单层膜结构形式已无法满足CSNS-Ⅱ 500 kW的高功率需求,因此开展CSNS-Ⅱ质子束窗研制,设计出双层膜中间通水的冷却结构,完成质子束窗双层膜的薄膜半径、薄膜厚度、水冷槽长度与宽度、对流换热系数等各参数对质子束窗温升与热应力的影响分析。通过冷却水需求分析得出,冷却水流速需大于15 L/min。通过质子束窗主体的流固耦合分析,消除箱体内部死水区域。最终优化后质子束窗薄膜位置最高温度47.8℃,薄膜位置最高热应力30.758 MPa。通过FLUKA软件对质子束窗材料的辐照损伤性能进行分析,在每年5 000 h工作时长、500 kW高功率束流的辐照下,辐照损伤DPA计算值为1.285 DPA,质子束窗的安全使用寿命在7年以上。  相似文献   
42.
针对增强型共栅共源(Cascode)级联结构和耗尽型AlGaN/GaN功率器件,利用60 MeV能量质子开展辐射效应研究.获得了经质子辐照后器件电学性能的退化规律,并与常规耗尽型HEMTs器件辐照后的电学性能进行了比较,发现增强型Cascode结构器件对质子辐照更加敏感,分析认为级联硅基MOS管的存在是其对质子辐照敏感的主要原因.质子辐照使硅基MOS管栅氧化层产生大量净的正电荷,诱导发生电离损伤效应,使其出现阈值电压负向漂移及栅泄漏电流增大等现象.利用等效(60 MeV能量质子,累积注量1×1012 p/cm2)剂量的60Co γ射线辐射器件得到电离损伤效应结果,发现器件的电学性能退化规律与60 MeV能量质子辐照后的退化规律一致.通过蒙特卡罗模拟得到质子入射在Cascode型器件内诱导产生的电离能损和非电离能损,模拟结果表明电离能损是导致器件性能退化的主要原因.  相似文献   
43.
太阳能电池作为一种高效的光电转化器,被广泛地应用于光伏发电系统中。激光作为一种高亮度光源辐照电池时,会导致其出现损伤,可利用电池的表面散射光谱特性,对其损伤程度进行判别。通过目标表面散射光谱测量系统,对激光辐照后的三结砷化镓电池散射光谱进行测量,并计算双向反射分布函数(BRDF)。其中测量系统主要由FX 2000和NIR 17型光纤光谱仪组成,针对电池表面的强镜反射特性,在实验中采用了入射角和反射角为30°的测量几何模型。原始三结砷化镓太阳能电池的结构主要包括减反射膜DAR层、顶电池GaInP层、中电池GaAs层和底电池Ge层,其散射光谱特征包括可见光谱段(500~900 nm)的吸收特性及近红外谱段(900~1 200 nm)的类周期振荡特性,在对连续激光辐照损伤后电池的光谱特性进行实验测量后,得到了损伤电池光谱BRDF的变化,并结合基于薄膜干涉理论的电池散射光谱模型,对各膜层损伤后的特征进行了分析。结果表明:DAR层的主要作用是降低光谱反射能量,对光谱曲线的特性影响较小;Ge层对光谱曲线形状基本无影响;电池散射光谱吸收和干涉等特征主要由GaInP层和GaAs层所引起,其中,GaIn...  相似文献   
44.
采用熔融-淬冷法制备了Tb3+掺杂锂铝硅酸盐闪烁玻璃,用紫外激发光谱、发射光谱及荧光寿命表征了光致发光性能,用X射线和阴极射线激发测试了辐射致发光性能。研究结果表明:低Tb3+掺杂浓度时,随着其浓度增大,Tb3+间的交叉弛豫增加导致了5D3→7Fj跃迁的能量逐渐向5D4→7Fj迁移转变,5D3激发态的荧光寿命和发射强度均明显下降,5D4-7Fj发射强度逐渐增大。较高Tb3+浓度时,其浓度继续增加会提升非辐射比例,是荧光寿命降低和荧光猝灭的最主要原因。比较光致发光和辐照致发光性能,发现随着激发源的能量上升,会增加激发态5D3能级向5D4能级的能量转移,同时,由于玻璃的密度低会导致辐照致发光效率随激发源的能量上升而下降。  相似文献   
45.
1-烷基-3-甲基咪唑双三氟甲基磺酰胺型离子液体(Cnmim][NTf2])被认为是最有希望用于核燃料循环中的分离试剂之一, 虽然其化学结构在辐照过程中变化不大, 但在受到γ辐照后会发生明显的变色, 因此有必要研究该类离子液体的变色原因. 本文以60Co为辐照源, 系统研究了辐照后不同C(1)-烷基链长和咪唑环上C(2)位上的H被甲基取代后离子液体的紫外-可见(UV-Vis)吸收光谱行为, 并结合辐照后离子液体荧光光谱和质谱的变化, 分析了导致该类离子液体辐照后颜色加深的原因. 结果表明, 随着咪唑环上C(1)―烷基链长度和剂量增大, 离子液体颜色加深; 而C(2)位上的H被甲基取代后颜色明显变浅. 辐照后咪唑型离子液体的变色主要来自于辐照后产生的烷基侧链含双键的咪唑阳离子, 咪唑阳离子二聚体和含氟咪唑化合物. 此外, γ辐照引起咪唑阳离子易发生π-π堆积, 而聚集态含量增加也会引起颜色加深.  相似文献   
46.
薄壁结构广泛应用于实际工程中,局部材料性能的变化、局部热应力等因素均影响结构的屈曲承载力。为考察局部升温对薄壁结构屈曲承载力的影响,通过激光辐照实现薄壁结构的局部快速升温。采用温度-位移耦合法进行非线性热屈曲分析,获得了激光功率密度、辐照光斑半径和薄板厚度对薄板热屈曲的影响;在此基础上采用弧长法分析轴向受压薄板结构在局部激光辐照下的整体屈曲承载力。数值结果表明:薄板结构的整体屈曲承载力随激光辐照时间的增加及辐照光斑半径的增大呈线性下降趋势,随薄板厚度的增加近似呈指数增大。  相似文献   
47.
本文报道了室温下飞秒激光辐照Tm∶YAG晶体的紫外光上转换荧光。Tm3+荧光的强度与泵浦光的功率之间的依赖关系揭示了晶体的上转换过程由三光子吸收过程所主导。研究表明上能级粒子的增加来自于Tm3+吸收一个泵浦光子跃迁到3H4能级后再吸收两个泵浦光子,然后离子跃迁至下能级产生上转换荧光。  相似文献   
48.
真空紫外波段铝反射膜制备   总被引:1,自引:0,他引:1  
林大伟  郭春  张云洞  李斌成 《光学学报》2012,32(2):231001-331
为制备出在130~210nm波段具有良好光谱性能的铝反射膜,优化设计了铝反射镜中铝层和保护层氟化镁的厚度,理论确定铝层和氟化镁保护层最佳厚度分别为80nm和33nm。采用热舟蒸发工艺,在BK7基片上制备了Al反射膜样品,获得了130~210nm波长范围内反射率均大于80%的金属铝膜。研究了铝层沉积速率和紫外辐照处理对薄膜性能的影响,并考察了铝膜光谱性能的时效性。结果表明铝层沉积速率越快,制备的铝膜反射率越高;合理地存放铝膜元件,可以长时间内保持铝膜的光谱性能。适当的紫外辐照处理能进一步提高铝膜在真空紫外波段的反射率。  相似文献   
49.
辐照与食品     
孙保华  李竹  孟杰 《物理》2012,41(2):110-111
虽然有人在担忧辐照食品的安全问题,但尚无研究表明能有效杀灭病原体的辐射剂量会对人类的身体健康产生危害.  相似文献   
50.
双频容性耦合等离子体密度径向均匀性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
蒋相站  刘永新  毕振华  陆文琪  王友年 《物理学报》2012,61(1):15204-015204
利用自主研制的全悬浮双探针, 对影响双频容性耦合等离子体径向均匀性的因素进行了研究. 发现低频功率、放电气压和放电间距对径向均匀性有明显影响. 合适的低频功率、放电气压及较大的极板间距可以得到更均匀的等离子体. 采用与实验相同的放电参数, 利用改进的二维流体模型进行理论模拟, 得到了不同极板间距下径向离子密度分布, 并和实验测量结果进行了比较, 两者的变化趋势基本符合. 关键词: 双频容性耦合等离子体 径向均匀性 全悬浮双探针 二维流体模型  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号