首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6735篇
  免费   810篇
  国内免费   1450篇
化学   4230篇
晶体学   168篇
力学   72篇
综合类   76篇
数学   155篇
物理学   4294篇
  2024年   29篇
  2023年   116篇
  2022年   133篇
  2021年   165篇
  2020年   106篇
  2019年   184篇
  2018年   107篇
  2017年   164篇
  2016年   146篇
  2015年   225篇
  2014年   352篇
  2013年   351篇
  2012年   445篇
  2011年   452篇
  2010年   411篇
  2009年   469篇
  2008年   508篇
  2007年   483篇
  2006年   454篇
  2005年   396篇
  2004年   370篇
  2003年   353篇
  2002年   306篇
  2001年   325篇
  2000年   237篇
  1999年   198篇
  1998年   165篇
  1997年   168篇
  1996年   161篇
  1995年   168篇
  1994年   154篇
  1993年   136篇
  1992年   112篇
  1991年   133篇
  1990年   87篇
  1989年   138篇
  1988年   31篇
  1987年   18篇
  1986年   18篇
  1985年   5篇
  1984年   10篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
排序方式: 共有8995条查询结果,搜索用时 31 毫秒
921.
建立超声辅助浸提法提取酸枣中黄酮的方法。以雅安碧峰峡野生酸枣为研究对象,通过单因素实验考察提取条件对黄酮提取率的影响,采用自由基清除(DPPH)法研究果皮粗黄酮提取物的抗氧化活性。在料液比为1∶30(g/m L),乙醇体积数为80%,浸泡时间为4 h,超声温度为80℃,超声时间为30 min时提取黄酮效果最好,果皮中黄酮含量为7.76%。果皮粗黄酮提取物对DPPH具有较好的抗氧化活性,其半数抑制浓度(IC50)为0.517 1 mg/mL。测定结果的相对标准偏差为0.54%(n=6),加标回收率在93.5%~100.6%之间。该方法具有较好的精密度与准确度,适用于酸枣中黄酮的提取。  相似文献   
922.
923.
刘晔  徐智勇  汪井源 《光学学报》2008,28(s2):62-67
在研究单次散射模型的基础上, 针对单次散射模型不能对天气变化对紫外光信号造成的影响做出模拟的不足, 结合大气散射理论构建了紫外光传输的二次散射模型。研究了瑞利散射和米氏(Mie)散射在四种典型天气条件下的散射相函数, 仿真得出了紫外光被大气中的粒子散射后的能量分布情况, 将其引入二次散射模型, 并确定了各种天气条件下的散射粒子浓度后对紫外光通信系统做出性能仿真。计算结果表明, 二次散射模型可以仿真不同的天气条件下的紫外光通信系统的性能, 从仿真结果上验证了非直视通信的可实现性。并得出, 在雨、雾天气下, 紫外光信号衰减剧烈, 接收仰角不可过大; 在天气晴好时, 能更好的实现紫外光非直视通信, 接收仰角可达到180°。长距离通信时, 天气状况变化对通信性能影响更大。  相似文献   
924.
本文对煤/天然气双燃料氢电联产多功能系统进行了特性规律分析.从燃料互补和能量综合梯级利用角度,分析了重整条件、氢气分离率对系统节能率的影响,以及多功能系统特征参数的变化规律,得到了新系统可以提高燃料化学能利用效率,同时可以降低CO2分离能耗的结论.在能量利用上的优势和对CO2的有效控制,使得新系统相对参考系统可以实现低能耗分CO2.  相似文献   
925.
分辨率对大气中痕量污染气体的DOAS测量性能影响研究   总被引:4,自引:2,他引:2  
在差分吸收光谱(DOAS)测量过程中,光谱分辨率的选择直接决定了污染气体浓度的测量准确度.主要研究了光谱分辨率对污染气体被榆测到的特征吸收结构形状的影响,以及差分吸收截面随分辨率的变化趋势,从而确定了光谱分辨率对污染气体最低可检测浓度的影响,通过研究分辨率与光强的关系,确定了分辨率与信噪比(S/N)的函数关系式,得出了DOAS测量NO2,O3,和SO2的最佳信噪比范围,对多种污染物标准气体进行了同时监测,计算出标准气体在不同光谱分辨率下的测量误差,确定了对NO2,O3和SO2监测的最适用的分辨率范围.在此分辨率范围既能够实现对痕量气体的准确定性定量测量,又能达到测量所需要的高灵敏度,强选择性和适用的时间分辨率.通过在北京丰台区的实际监测得到了与点式仪器测量结果很好的一致性.  相似文献   
926.
Ir是一种重要的真空紫外反射材料,在太阳物理、宇宙物理、生命科学、大气物理、同步辐射等方面有着十分重要的应用.对电子束蒸发沉积Ir膜在真空紫外波段的反射特性进行了系统的理论和实验研究.根据吸收材料基底上单层金属膜数学计算模型,对不同基片上各种厚度的Ir膜真空紫外反射率进行了优化计算.根据计算和前期实验结果,采用电子束蒸发方法,在石英、K9玻璃基片上沉积了不同厚度的Ir膜,在入射波长120 nm处获得了近30%正入射反射率,对应的Ir膜厚度为12 nm.过厚或过薄均不利于Ir膜反射率的提高.经退火处理后,Ir膜中张应力有所释放但并未消除,同时晶粒平均尺寸显著增大,反射率下降.  相似文献   
927.
观测了2-(2′-羟基苯基)苯并噻唑(HBT)在不同极性溶剂中的吸收光谱和荧光光谱,详细研究了溶剂极性对HBT发生激发态分子内质子转移(ESWT)影响的机制。吸收光谱表明在常态条件下,HBT在各种溶剂中都以烯醇式构型和酮式构型共同存在,但以烯醇式构型占绝大多数。荧光光谱表明在纯环己烷溶剂中,HBT被紫外光激发时,绝大多数烯醇式构型发生ESIPPT转变为酮式构型,分子的ESIPT效率最大。在含有乙醇的极性溶剂中,HBT烯醇式会形成溶剂化的烯醇式构型,阻碍分子发生ESIPT反应。溶剂中乙醇含量愈多极性愈强,溶剂化烯醇式的成份就愈多,HBT的ESIPT效率就愈低。以400nm光激发HBT溶液时,在510nm处发现酮式构型荧光,从而确认了400nm处的弱吸收是酮式构型的吸收;且在436和456nm处还有新的荧光峰,分析其可能来源于酮式构型去质子化阴离子的发射。  相似文献   
928.
血液可见吸收光谱与血氧参数神经网络估算法   总被引:1,自引:0,他引:1  
总血红蛋白浓度和血氧饱和度是两个基本的血氧参数。文章提出了利用内置双光纤微创探头在位测量大鼠脑组织血氧参数的新方法。首先,利用悬乳液(Intralipid)和全血配置不同总血红蛋白浓度的混合溶液,模拟生物组织模型,用光纤光谱仪测试系统测量组织模型在加氧和去氧时的实时吸收光谱,同时用血氧分析仪(OXI meter)对血氧参数定标,建立测试光谱和定标数据样本集。然后,利用人工神经网络建立血液吸收光谱与血氧参数的神经网络模型,训练后的网络模型能根据吸收光谱输出生物组织的血氧参数值,总血红蛋白浓度和血氧饱和度的平均输出误差分别为±4μmol·L-1和±5%。最后,利用神经网络模型对大鼠脑组织血氧参数进行了在位测试实验,测得脑灰质的血氧饱和度为0.60~0.70,脑白质血氧饱和度为0.45~0.55;总血红蛋白浓度在脑皮层(深度1mm)附近最高,平均110μmol·L-1,其余深度脑组织的总血红蛋白浓度为70~90μmol·L-1。这种方法对脑外科微创手术中实时在位测试脑组织血氧参数具有重要的参考意义。  相似文献   
929.
基于激光吸收光谱乙炔在线监测技术的研究   总被引:1,自引:0,他引:1  
乙炔作为有机化工产品原料,广泛应用于化学工业中,但易燃易爆,在储存和工业生产中有必要对其进行实时在线监测.可调谐半导体激光吸收光谱(TDLAS)技术具有高选择性、高灵敏、快速响应等特点,在痕量气体检测中得到了广泛的应用.文章研究了乙炔气体在近红外波段的吸收线分布特征,详细地讨论了基于近红外可调谐二极管激光吸收光谱技术的乙炔在线监测系统设计方案;建立了实验测量系统,研究了信号检测方法和浓度反演算法,对长度10 cm的样品池和已知标准浓度乙炔气体配制的不同浓度乙炔气体进行检测,检测限可以达到1.46 cm3·m-3;进行了动态检测实验,测量结果具有较好的稳定性和可靠性.分析表明系统设计方案可行,由此发展的乙炔在线监测系统可用于乙炔储存、运输和使用过程中泄漏报警.  相似文献   
930.
黄丹  邵元智  陈弟虎  郭进  黎光旭 《物理学报》2008,57(2):1078-1083
采用第一性原理计算方法,计算了纤锌矿结构Zn1-xMgxO(x=0,00625,0125,025)的电子结构及吸收光谱. 计算结果表明,Mg的掺入使ZnO的电子结构发生了较大的改变,与Mg邻近的O原子得到电子的数目明显增大,进而O原子返回部分电子给邻近Zn原子. Zn-O间相互作用减弱,禁带宽度变大,这也从同一合金中Zn4s上移的程度得到证实. 其吸收光谱也随着Mg的掺入出现蓝移现象,其吸收边对应波长分别为379, 关键词: 第一性原理计算 电子结构 吸收光谱 纤锌矿结构ZnO  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号