首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   62篇
  国内免费   15篇
化学   60篇
晶体学   21篇
力学   1篇
数学   1篇
物理学   76篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   11篇
  2011年   9篇
  2010年   15篇
  2009年   14篇
  2008年   8篇
  2007年   17篇
  2006年   15篇
  2005年   14篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1989年   3篇
排序方式: 共有159条查询结果,搜索用时 46 毫秒
51.
采用甚高频等离子体增强化学气相沉积技术高速沉积了有无籽晶层两个系列微晶硅薄膜,通过椭圆偏振光谱、拉曼光谱和XRD对薄膜进行了分析,发现采用籽晶层后,在薄膜沉积初期有促进晶化的作用;由于籽晶层减少了薄膜的诱导成核时间,提高了薄膜的沉积速率,对比了实时在线和离线椭圆偏振光谱两种测量状态对分析微晶硅薄膜的影响,研究发现,当薄膜较薄时,实时在线测量得到的薄膜厚度小于离线下的数值;当薄膜较厚时,两种测量条件下得到的薄膜厚度差异较小;实时在线条件下得到的表面粗糙度要大于离线条件下得到的数值,这是由于薄膜暴露在大气中后表面有硅氧化物生成,对表面有平滑作用.  相似文献   
52.
A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied.It includes the discharge time-accumulating heating effect,discharge power,inter-electrode distance,and total gas flow rate induced heating effect.It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other.However,all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films,which will affect the properties of the materials with increasing time.This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed.Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon,it is proposed that the discharge power and the heating temperature should be as low as possible,and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated.  相似文献   
53.
This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-high-frequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μ c-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of ~ 1.0~nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μ c-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J--V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300~sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5~\AA/s (1~\AA=0.1\,nm).  相似文献   
54.
采用美国宾州大学开发的AMPS(Analysis of Microelectronic and Photonic Structures)软件模拟了p/i界面缺陷态密度(Npt/i)和非晶孵化层厚度(d)对pin型氢化微晶硅(μc-Si:H)薄膜太阳电池性能的影响.结果表明:随着Npt/i的增大,电池的开路电压Voc和填充因子FF单调减小,短路电流Jsc基本不变;随着d的增大,Jsc和FF单调减小,Voc反而增大;Npt/i和d值的增大均会导致电池光电转换效率η下降.通过对电池内部的电场及能带的分析,对上述模拟结果进行了解释.  相似文献   
55.
甚高频高速沉积微晶硅薄膜的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用甚高频化学气相沉积(VHF-PECVD)技术制备了系列微晶硅(μc-Si:H)薄膜样品,重点研究了硅烷浓度、功率密度、沉积气压和气体总流量对薄膜沉积速率和结晶状态的影响,绘制了沉积气压和功率密度双因素相图. 以0.75nm/s的高速沉积了器件质量级的微晶硅薄膜,并以该沉积速率制备出了效率为5.5%的单结微晶硅薄膜电池. 关键词: 微晶硅薄膜 高速沉积 甚高频化学气相沉积  相似文献   
56.
汪振辉 《应用化学》2009,26(7):840-844
本文以镍铬合金为基体构建了嵌入式超薄微晶纤维素/碳糊电极,该电极是在镍铬合金表面通过直接嵌入微晶纤维素修饰的碳糊膜而制成的。以抗坏血酸为目标物考察其在该电极上的电化学行为,结果表明合金表面嵌入的超薄微晶纤维素/碳糊膜改变了基体电极的电化学性质,扫描电镜表征电极表面形貌,电化学方法考察了该电极对AA的响应。该电极对AA的电氧化显示了良好的增敏作用,可用于实际样品中AA的测定。  相似文献   
57.
本文国内首次报道了采用高压RF-PECVD技术沉积本征微晶硅材料的结果.实验表明,增大等离子体激发功率和减小硅烷浓度都能够使薄膜材料由非晶硅逐渐向微晶硅转变,而结构上的改变使得电学特性也随之改变.通过工艺参数的优化和纯化器的使用,有效地控制了氧的掺杂,在较高的生长速度下得到了器件质量级的本征微晶硅材料.将实验得到的微晶硅作为太阳电池光吸收层,在没有ZnO背电极和没有优化窗口层材料以及p/i界面时,电池的效率达到5.22;,这进一步表明本征微晶硅材料的良好性能.  相似文献   
58.
Hybrid modified microcrystalline cellulose (HMCC), with SiO2 nanoparticles being in-situ loaded on the surface of microcrystalline cellulose (MCC), was obtained through a sol-gel process of tetraethoxysilane (TEOS) by using ammonia as catalyst. HMCC was characterized by thermogravimetric analysis and scanning electron microscopy. The results showed that the spherical nano-SiO2 particles had been loaded successfully on the surface of the MCC with a loading ratio of approximately 10%. Then the HMCC was used in high vinyl solution-polymerized styrene butadiene rubber (SSBR)/silica compounds to replace part of the silica, and its effects on the physio-mechanical and dynamic mechanical properties of the vulcanizates were investigated. The results showed that the HMCC samples had improved physio-mechanical properties and lower heat build-up than that of MCC ones. Dynamic mechanical analysis (DMA) showed that the tanδ value of the compounds decreased at 60°C while increased obviously at 0°C, which meant that the tires would have improved wet-skid resistance while maintaining low rolling resistance when HMCC was used in tire tread compounds. As observed from scanning electron microscopy (SEM) photos, the sizes of the HMCC were in-situ decreased from 20–90 µm to 0.5–10 µm during the processing of the rubber compounds. Compared with MCC, the interfacial adhesion between HMCC and rubber was also improved greatly.  相似文献   
59.
The effect of mechanical grinding on the physicochemical properties of acetaminophen in the presence of three additives,- or-cyclodextrin and microcrystalline cellulose, was studied by using TLC, powder X-ray diffraction analysis, infrared spectroscopy and differential scanning calorimetry. The results indicate that the crystallinity of physical mixtures of acetaminophen and the described additives decreased with increased grinding time and formed an amorphous state when mixtures containing- or-cyclodextrin were ground with acetaminophen. We also found that the acetaminophen molecules could be included step-by-step into the cavity of-cyclodextrin molecules and formed an amorphous inclusion complex.-Cyclodextrin and microcrystalline cellulose did not form an inclusion complex with acetaminophen, but acted only to decrease the crystallinity of the ground mixtures. The mechanical grinding efficiency for acetaminophen was improved in the order of-cyclodextrin -cyclodextrin > microcrystalline cellulose.This paper is part XI of Drug Interaction in Pharmaceutical Formulations.  相似文献   
60.
Medical tablet forming ability of microcrystalline cellulose (MCC) was investigated in relation to the mobility of water molecules in MCC particles. For this purpose, the spin-lattice relaxation time T1 of water in the system was measured by 1H-NMR. Over a wide range of water contents (0.02 H2O/cellulose (g/g) 1.79), two different T1 (T1,l and T1,s) values were observed for water in each MCC sample. Below the equilibrium water content, water having these two different T1 values exchange with each other in an MCC particle reaching an equilibrium state within a given time scale (equilibrium constant K). The T1,l, T1,s and K values for water in MCC, estimated at the equilibrium water content, showed fairly good correlations with the hardness of the tablets made by the MCC samples. Sample with a shorter T1, or larger K tended to have a stronger tablet forming ability. In the spin-spin relaxation time T2 measurements for protons in an MCC/D2O system, two T2 components originating from the glassy cellulose solid (T2,G) and the swelling region (T2,l) were observed. It was found that the mole fraction xL of protons with T2,L in the system exhibits a clear linear correlation with K. From these results, a structural model for the distribution of water in MCC particles was propoed by taking the surface of each microfibril and the disordered region within the microfibril into consideration  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号