首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   27篇
  国内免费   3篇
物理学   31篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2002年   2篇
  2001年   1篇
排序方式: 共有31条查询结果,搜索用时 187 毫秒
11.
The green light emitting diodes(LEDs)have lower quantum efficiency than LEDs with other emission wavelengths in the visible spectrum.In this research,a novel quantum well structure was designed to improve the electroluminescence(EL)of green InGaN-based LEDs.Compared with the conventional quantum well structure,the novel structure LED gained 2.14times light out power(LOP)at 20-mA current injection,narrower FWHM and lower blue-shift at different current injection conditions.  相似文献   
12.
Temperature-dependent photoluminescence (PL) and time resolved photoluminescence (TRPL) are performed to study the PL characteristics and carrier transfer mechanism in asymmetric coupled InGaN/GaN multiple quantum wells (AS-QWs). Our results reveal that abnormal carrier tunnelling from the wide quantum well (WQW) to the narrow quantum well (NQW) is observed at temperature higher than about lOOK, while a normal carrier tunnelling from the NQW to the WQW is observed at temperature lower than 100 K. The reversible carrier tunnelling between the two Q Ws makes it possible to explore new types of temperature sensitive emission devices. It is shown that PL internal quantum efficiency (IQE) of the NQW is enhanced to about 46% due to the assistant of the abnormal carrier tunnelling.  相似文献   
13.
周均铭  陈弘  贾海强 《物理》2002,31(7):450-452
第三代半导体氮化镓化合物半导体已成为蓝光发光二极管的主流材料,国际上的产业化已成规模,国内也有多家处于中试阶段,由于氮化镓基材料中有如此多的问题没有解决,材料制备设备,器件工艺也极需改进及优化,这既给了中国科研人员及工程技术人员一个机遇,也使他们面临着严峻的挑战.  相似文献   
14.
SiNx插入层的生长位置对GaN外延薄膜性质的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
系统研究了纳米量级的多孔 SiNx插入层生长位置对高质量GaN外延薄膜性质的影响.高分辨X射线衍射测量结果表明:SiNx插入层生长在CaN粗糙层上能够得到最好的晶体质量.利用测量结果分别计算出了螺位错和刃位错的密度.此外,GaN薄膜的光学、电学性质分别用Raman散射能谱、低温光致发光能谱和霍尔测量的方法进行了表征.实...  相似文献   
15.
Xiaotao Hu 《中国物理 B》2022,31(3):38103-038103
Gallium nitride (GaN) thin film of the nitrogen polarity (N-polar) was grown on C-plane sapphire and misoriented C-plane sapphire substrates respectively by metal-organic chemical vapor deposition (MOCVD). The misorientation angle is off-axis from C-plane toward M-plane of the substrates, and the angle is 2° and 4° respectively. The nitrogen polarity was confirmed by examining the images of the scanning electron microscope before and after the wet etching in potassium hydroxide (KOH) solution. The morphology was studied by the optical microscope and atomic force microscope. The crystalline quality was characterized by the x-ray diffraction. The lateral coherence length, the tilt angle, the vertical coherence length, and the vertical lattice-strain were acquired using the pseudo-Voigt function to fit the x-ray diffraction curves and then calculating with four empirical formulae. The lateral coherence length increases with the misorientation angle, because higher step density and shorter distance between adjacent steps can lead to larger lateral coherence length. The tilt angle increases with the misorientation angle, which means that the misoriented substrate can degrade the identity of crystal orientation of the N-polar GaN film. The vertical lattice-strain decreases with the misorientation angle. The vertical coherence length does not change a lot as the misorientation angle increases and this value of all samples is close to the nominal thickness of the N-polar GaN layer. This study helps to understand the influence of the misorientation angle of misoriented C-plane sapphire on the morphology, the crystalline quality, and the microstructure of N-polar GaN films.  相似文献   
16.
We have successfully prepared GaN based high electron mobility transistors(HEMTs)on metallic substrates transferred from silicon substrates by electroplating technique.GaN HEMTs on Cu substrates are demonstrated to basically have the same good electric characteristics as the chips on Si substrates.Furthermore,the better heat dissipation of HEMTs on Cu substrates compared to HEMTs on Si substrates is clearly observed by thermoreflectance imaging,showing the promising potential for very high-power and high-temperature operation.This work shows the outstanding ability of HEMT chips on Cu substrates for solving the self-heating effect with the advantages of process simplicity,high yield,and low production requirement.  相似文献   
17.
Absorption and carrier transport behavior plays an important role in the light-to-electricity conversion process, which is difficult to characterize. Here we develop a method to visualize such a conversion process in the InGaN/GaN multiquantum wells embedded in a p-n junction. Under non-resonant absorption conditions, a photocurrent was generated and the photoluminescence intensity decayed by more than 70% when the p-n junction out-circuit was switched from open to short. However, when the excitation photon energy decreased to the resonant absorption edge, the photocurrent dropped drastically and the photoluminescence under open and short circuit conditions showed similar intensity. These results indicate that the escaping of the photo-generated carriers from the quantum wells is closely related to the excitation photon energy.  相似文献   
18.
High quality and highly conductive n-type Al0.7Ga0.3N films are obtained by using AlN multi-step layers (MSL) with periodical variation of Ⅴ/Ⅲ ratios by low-pressure metalorganic chemical vapour deposition (LP-MOCVD). The full-width at half-maximum (FWHM) of (0002) and (1015) rocking curves of the Si-doped Al0.7Ga0.3N layer are 519 and 625 arcsec, respectively, Room temperature (RT) Hall measurement shows a free electron concentration of 2.9 × 10^19 cm^-3, and mobility of 17.8cm^2V^-1s^-1, corresponding to a resistivity of 0.0121 Ω cm. High conductivity of the Si-doped AlGaN film with such high Al mole fraction is mainly contributed by a remarkable reduction of threading dislocations (TDs) in AlGaN layer. The TD reducing mechanism in AlN MSL growth with periodical variation of Ⅴ/Ⅲ ratio is discussed in detail.  相似文献   
19.
Canti-bridged epitaxial lateral overgrowth (CBELO) of GaN is performed by metalorganic chemical vapour deposition (MOCVD) on maskless V-grooved sapphire substrates prepared by wet chemical etching with different mesa widths. The wing tilt usually observed in ELO is not found in the CBELO GaN with wide mesa widths, while it can be detected obviously in the GaN with narrow mesa widths. The wing tilt of CBELO GaN grown on a grooved sapphire substrate with narrow mesa can be controlled by adjusting the thickness of the nucleation layer. The dependence of the wing tilt on the nucleation layer thickness is studied. Cross-sectional scanning electron microscopy is used to characterize the geometry of the wing regions, and double crystal x-ray diffraction is used to analyse the structural characteristics and to measure the magnitude of the crystalline wing tilt. It is found that the crystalline wing tilt can be eliminated completely by first growth of a thin nucleation GaN layer then the CBELO GaN. Possible reason and the origin of the wing tilt in CBELO GaN films are also discussed.  相似文献   
20.
Heterojunction phototransistors(HPTs)with scaling emitters have a higher optical gain compared to HPTs with normal emitters.However,to quantitativel.y describe the relationship between the emitter-absorber area ratio(A_e/A_a)and the performance of HPTs,and to find the optimum value of A_e/A_a for the geometric structure design,we develop an analytical model for the optical gain of HPTs.Moreover,five devices with different A_e/A_a are fabricated to verify the numerical analysis result.As is expected,the measurement result is in good agreement with the analysis model,both of them confirmed that devices with a smaller A_e/A_a exhibit higher optical gain.The device with area ratio of 0.0625 has the highest optical gain,which is two orders of magnitude larger than that of the device with area ratio of 1 at 3 V.However,the dark current of the device with the area ratio of 0.0625 is forty times higher than that of the device with the area ratio of 1.By calculating the signal-to-noise ratios(SNRs) of the devices,the optimal value of Ae/Aa can be obtained to be 0.16.The device with the area ratio of0.16 has the maximum SNR.This result can be used for future design principles for high performance HPTs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号