首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   4篇
物理学   4篇
  2020年   1篇
  2019年   1篇
  2013年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Absorption coefficient is a physical parameter to describe electromagnetic energy absorption of materials, which is closely related to solar cells and photodetectors. We grow a series of positive-intrinsic-negative(PIN) structures on silicon wafer by a gas source molecule beam epitaxy system and the investigate the absorption coefficient through the photovoltaic processes in detail. It is found that the absorption coefficient is enhanced by one order and can be tuned greatly through the thickness of the intrinsic layer in the PIN structure, which is also demonstrated by the 730-nm-wavelength laser irradiation. These results cannot be explained by the traditional absorption theory.We speculate that there could be some uncovered mechanism in this system, which will inspire us to understand the absorption process further.  相似文献   
2.
In this paper we report on the effect of an In x Ga1-x N continuously graded buffer layer on an InGaN epilayer grown on a GaN template.In our experiment,three types of buffer layers including constant composition,continuously graded composition,and the combination of constant and continuously graded composition are used.Surface morphologies,crystalline quality,indium incorporations,and relaxation degrees of InGaN epilayers with different buffer layers are investigated.It is found that the In x Ga1-x N continuously graded buffer layer is effective to improve the surface morphology,crystalline quality,and the indium incorporation of the InGaN epilayer.These superior characteristics of the continuously graded buffer layer can be attributed to the sufficient strain release and the reduction of dislocations.  相似文献   
3.
We have successfully prepared GaN based high electron mobility transistors(HEMTs)on metallic substrates transferred from silicon substrates by electroplating technique.GaN HEMTs on Cu substrates are demonstrated to basically have the same good electric characteristics as the chips on Si substrates.Furthermore,the better heat dissipation of HEMTs on Cu substrates compared to HEMTs on Si substrates is clearly observed by thermoreflectance imaging,showing the promising potential for very high-power and high-temperature operation.This work shows the outstanding ability of HEMT chips on Cu substrates for solving the self-heating effect with the advantages of process simplicity,high yield,and low production requirement.  相似文献   
4.
In this paper we report on the effect of an lnxGal xN continuously graded buffer layer on an InGaN epilayer grown on a GaN template. In our experiment, three types of buffer layers including constant composition, continuously graded composition, and the combination of constant and continuously graded composition are used. Surface morphologies, crystalline quality, indium incorporations, and relaxation degrees of InGaN epilayers with different buffer layers are investigated. It is found that the InxGa1-xN continuously graded buffer layer is effective to improve the surface morphology, crystalline quality, and the indium incorporation of the InGaN epilayer. These superior characteristics of the continuously graded buffer layer can be attributed to the sufficient strain release and the reduction of dislocations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号