首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为了改善Co-Mg-Ce合金膜中镁、铈含量较低现象,本文主要研究了在Co-Mg-Ce合金膜中添加Ni元素后合金膜的组成及耐蚀性能的改善情况。首先利用线性扫描技术研究Co(Ⅱ)、Ni(Ⅱ)在Cu电极上的电化学行为,结果表明Co(Ⅱ)、Ni(Ⅱ)在氯化胆碱-尿素熔体中发生一步不可逆反应,然后利用恒电位技术在不同Ni含量的镀液中沉积Ni-Co-Mg-Ce四元合金膜,并利用SEM、EDS和XRD等技术对所得合金膜进行表征,研究发现,由于Co、Ni的共同诱导作用,Ni-Co-Mg-Ce四元合金膜比Co-Mg-Ce三元合金膜中的Mg、Ce元素含量多;当镀液中Ni(Ⅱ)浓度为0.02 mol·L~(-1)时,镀层晶粒细致均匀且Ce含量最高,合金膜中各元素多以化合物形态存在。对合金膜进行Tafel测试,利用外推法得出合金膜在NaCl溶液、NaOH溶液中的自腐蚀电流与电位,结果表明Ni-Co-Mg-Ce四元合金膜在中性及碱性条件下有良好的耐腐蚀性。  相似文献   

2.
采用扫描电镜、能谱仪、X射线衍射等方法,研究了化学沉积Ni–Fe–P合金的组成和结构,并对其冲蚀性进行了研究。结果表明,随着镀液中硫酸亚铁浓度增大,化学沉积Ni–Fe–P镀层中的铁含量增大,磷含量下降。化学沉积Ni–Fe–P镀层的腐蚀电位比化学镀Ni–P镀层的腐蚀电位高。在3.5%(质量分数)Na Cl溶液组成的悬浮液冲击下,碳化硅颗粒粒度为124μm时,镀层质量损失出现最大值,随着悬浮液流速的增大镀层质量损失增加。  相似文献   

3.
酸性溶液化学镀Ni-P-B合金及结构性能表征(英文)   总被引:1,自引:0,他引:1  
蒋太祥  吴辉煌 《电化学》2000,6(1):17-24
联用次亚磷酸钠和硼氢化钠两种还原剂 ,从酸性镀液中沉积出不同硼含量的Ni_P_B镀层 ,并用原子力显微镜、X_射线衍射、透射电镜、动电位扫描等实验技术对其镀态结构及性能进行了表征。实验表明 ,镀液中硼氢化钠含量对沉积速度影响不大 ,但能显著影响镀层的化学组成。硼的共沉积使镍晶格点阵产生扭变 ,导致镀层晶粒增大 ,表面粗糙 ,颗粒分布不均匀 ,并使镀层由非晶态向微晶结构转变 ,且微晶成分随镀层中硼含量的增加而增多。Ni_P_B镀层的硬度随镀层中硼含量的增加而增大 ,热处理能显著提高镀层的硬度 ,且服从沉淀硬化机理。在 3.5wt%NaCl和 40wt%NaOH两种介质中 ,Ni_P_B合金的耐腐蚀能力优于Ni_P合金。镀层中硼含量越高 ,其耐腐蚀能力越强。  相似文献   

4.
在尿素-溴化钠熔体中电沉积Ni-La合金,考察了合金的沉积行为和阴极电流密度对合金组成和表面形貌的影响。结果表明,镧与镍经过诱导共沉积形成Ni-La合金;随着阴极电流密度的增加,镀层中镧含量先升高后降低(在15 mA·cm^-2条件下达到最高),镀层表面微粒变大。用热分析技术和X射线衍射研究了Ni89.7La10.3合金的晶化行为,该合金在镀态时呈非晶态结构,在446.1℃热处理后的镀层晶化生成面心立方Ni-La相(Fm3m)。采用电化学技术研究了该镀层的电催化析氢性能,实验证实Ni89.7La10.3合金的电催化析氢性能优于镍。  相似文献   

5.
王森林 《应用化学》2004,21(6):576-0
用柠檬酸钠为络合剂、硼酸为缓冲剂在碱性体系中用化学沉积法由ZnSO4、NiSO4、NaH2PO2和H2BO3制得了NiZnP合金。考察了pH和ZnSO4与(ZnSO4 NiSO4)摩尔比对沉积速度、镀层组成、结构、表面形貌和耐腐蚀性能的影响。发现锌在沉积过程中起阻碍作用,致使镀层中锌含量不高(不超过原子分数20%)。用X射线衍射、透射电镜和扫描电镜等技术研究了镀层的结构和表面微观形貌。结果表明,镀态合金由非晶和少量立方镍两相组成;工艺条件对镀层表面微观形貌有明显的影响。采用浸泡实验和电化学阳极极化实验,重点研究了不同工艺条件的镀层在质量分数为3.5%的NaCl溶液(pH=7.0)中的耐腐蚀性能。结果表明,不同工艺条件所得的镀层耐腐蚀能力不同,NiZnP合金的耐腐蚀性主要与镀层组成有关,含锌量越高、含磷量越低的镀层耐腐蚀性越好。浸泡实验和电化学阳极极化实验的结果是比较吻合的。  相似文献   

6.
利用循环伏安法和恒电位电解法研究了室温下在二甲基亚砜中铈钴合金膜的电化学制备.结果表明,二甲基亚砜中Ce(Ⅲ)在Pt电极上的还原反应为一步完全不可逆反应.控制沉积电位在-2.10V~2.30V,利用恒电位电解得到表面平滑,附着力好,铈含量为37wt%~45wt%的铈钴合金膜.  相似文献   

7.
非晶/纳米晶Ni-Mo-Ce合金镀层结构及其催化析氢性能   总被引:1,自引:0,他引:1  
在Ni-Mo合金镀液中添加适量的CeCl3溶液,获得了非晶+纳米晶混合结构的Ni-Mo-Ce合金镀层.用X射线衍射(xRD)和扫描电镜(SEM)测试技术研究镀层结构及其表面形貌.实验结果表明,随着Ce含量的增加,镀层中Mo元素含量有所提高,而Ni元素含量有所降低;镀层的显微硬度先增加后降低,当Ce加入量为2 g·L-1时,显微硬度最高.电解实验表明,Ni-Mo-Ce合金具有比Ni-Mo合金更优异的耐蚀性能和良好的催化析氢性能.  相似文献   

8.
为提高化学镀Ni-W-P镀层的耐蚀性和耐磨性,拓宽其应用,采用电化学方法和热处理等手段,研究了镀液中添加剂硝酸铈(Ce(NO3)3)的质量分数和热处理对化学镀Ni-W-P镀层的沉积速度、孔隙率、失重腐蚀速度、腐蚀电位、腐蚀电流、交流阻抗、显微硬度、摩擦系数等性能的影响。结果表明:添加1.0 wt%Ce(NO3)3时,所得镀层的沉积速度最大(36.5 g/m2·h),孔隙率最低(0.8个/cm2),耐腐蚀性能最好。镀层的组织均匀、致密、无缺陷和非晶态结构是其耐蚀性能高的重要原因。100~600℃热处理后,镀层硬度和耐磨性有所提高,而400℃热处理之后,合金显微硬度高达1100 HV,是镀态的1.8倍。  相似文献   

9.
稀土元素对镍基合金刷镀层沉积速率的作用   总被引:1,自引:0,他引:1  
研究了La ,Ce ,Sm及Er对电刷镀Ni P ,Ni Cu P和Ni Cu P MoS2 3种镀层沉积速率的影响。4种稀土都能提高镀层的沉积速率 ,其中Sm对Ni P和Ni Cu P镀层沉积速率的提高效果最为明显。稀土提高镀层沉积速率均存在一最佳的加入量。在一定的刷镀电压范围内 ,稀土加速Ni P ,Ni Cu P镀层沉积速率的作用效果及程度没有变化。分析了稀土提高镀层沉积速率的作用机制。  相似文献   

10.
在Ni-Mo合金镀液中添加适量的CeCl3溶液,获得了非晶+纳米晶混合结构的Ni-Mo-Ce合金镀层。用X射线衍射(XRD)和扫描电镜(SEM)测试技术研究镀层结构及其表面形貌。实验结果表明,随着Ce含量的增加,镀层中Mo元素含量有所提高,而Ni元素含量有所降低;镀层的显微硬度先增加后降低,当Ce加入量为2 g.L-1时,显微硬度最高。电解实验表明,Ni-Mo-Ce合金具有比Ni-Mo合金更优异的耐蚀性能和良好的催化析氢性能。  相似文献   

11.
电沉积Ni—Mo—P合金镀层在NaCl溶液中的腐蚀特性   总被引:1,自引:0,他引:1  
曾跃  姚素薇 《电化学》1998,4(4):380-387
用失重法,阳极率曲线,X-光电子能谱(XPS)以及俄歇电子能谱(AES)研究了电沉积Ni-Mo-P合金镀层在5%NaCl溶液中的腐蚀特性,非晶态Ni-Mo-P合金镀层比晶态Ni-Mo-P合金镀层有较低的腐蚀速度阳极极化曲线表明,Ni-Mo-P合金镀层中,镍的摩尔分数国0.719~0.868时,随镀层中磷含量的增加,腐蚀电位正移,而活化区的峰电流随镀层中钼含量的增加而增加,磷含量的活化区的峰电流以及  相似文献   

12.
含铈不锈钢的抗菌性能   总被引:6,自引:0,他引:6  
以00Cr18Ni9不锈钢成分为基础,添加0~5%的稀土元素铈(Ce).利用电子探针分析了加铈(Ce)不锈钢中Ce的分布;用化学分析法测定了含铈不锈钢中铈(Ce)和碳(C)的含量;用X射线衍射方法测试了含铈(Ce)不锈钢中铈(Ce)的析出相成分;采用贴膜法测试了含Ce不锈钢对大肠杆菌ATCC 8099、金黄色葡萄球菌ATCC 6538的抗菌性能.结果表明: 含Ce不锈钢具有优异的抗菌性能,与含Cu抗菌不锈钢相比,含Ce不锈钢无需时效热处理就具有优异的抗菌性能.并讨论了含Ce不锈钢的抗菌机制.  相似文献   

13.
采用化学还原法制备了不同铈含量的Ni-P-Ce超细非晶态合金催化剂,测试了其苯加氢活性.应用X射线衍射和差热方法对经不同温度退火后的样品进行了结构分析,并和其苯加氢活性相关联.实验发现,微量铈的加入可大大提高催化剂的热稳定性,进而提高其加氢活性.  相似文献   

14.
Ni–W alloys were electrodeposited onto copper foil from citrate solution. Coatings containing from 11 to 21 at.% W and having 7–52 μm in thickness were obtained. The structure of these alloys was analyzed by X-ray diffraction and by using electron and light microscopy techniques. Alloys with 11 and 15% W are composed of two phases: solid solution of W in fcc Ni and solid solution of Ni in bcc W. An increase in W content in the Ni–W alloys to ca. 18–19% of W resulted in the grain refinement and the transition to amorphous structure. The corrosion behavior of obtained Ni–W and unalloyed Ni coatings was studied in 0.5 M NaCl solution by means of electrochemical impedance spectroscopy, potentiodynamic polarization and light microscopy. Comparing to pure Ni, the obtained Ni–W coatings exhibited a clearly decreased corrosion resistance (in terms of corrosion current density and polarization or charge transfer resistance at the open circuit potential). Despite of the quite wide range of composition of the alloys under test, the related grain refinement, and the transition to the amorphous structure, no clear relation between the corrosion rate and W content was detected. This behavior can be a result of the interplay of the activating effect of grain refinement or preferential dissolution of W from one side and diffusion barrier action or inhibition provided by the surface film of W oxidation products from the other side. The differences observed in the corrosion resistance of Ni–W coatings are more related to their morphological imperfections arising from various deposition conditions than to the W content. Some samples showed a rather non-uniform nature of corrosion (pronounced attack along cracks). An inversion in the dissolution behavior of Ni–W and unalloyed Ni was observed with increasing anodic potential. Contrary to pure Ni, Ni–W coatings were resistant to pitting corrosion in NaCl solution. Contribution to the Fall Meeting of the European Materials Research Society, Symposium D: 9th International Symposium on Electrochemical/Chemical Reactivity of Metastable Materials, Warsaw, 17th–21st September, 2007.  相似文献   

15.
In the aircraft industry, anodizing and posttreatment steps use Cr (VI) compounds, which, despite offering good corrosion resistance and self-healing properties, are highly toxic and carcinogenic. Ce compounds are recognized as efficient corrosion inhibitors for Al alloys, and several works report self-healing ability for these chemicals. In this investigation, the corrosion resistance of Alclad AA2024-T3 alloy anodized in tartaric-sulphuric acid (TSA) bath and posttreated in a solution comprising cerium nitrate without and with hydrogen peroxide was evaluated. The purpose is to investigate the potentiality of using hydrothermal treatment in Ce nitrate solution as candidate to replace Cr (VI) posttreatment. The aim is to provide a posttreatment step which, while improving the corrosion resistance, does not plug the mouths of the pores maintaining the adhesion properties of the porous anodic layer. Microstructural characterization was carried out by SEM-EDS whereas corrosion resistance was evaluated by EIS. The surface analysis showed that the posttreatments, all performed at 50°C, kept the open structure of the pores. EIS analysis showed that the posttreatments performed in the H2O2 solution for short immersion times were the most effective in improving the corrosion resistance of the samples, whereas electrical equivalent circuit (EEC) fitting of the data indicated sealing of the porous layer during the immersion of the different samples in the test solution. SEM-EDS analysis of the samples posttreated in the H2O2 containing solution, prior and after the corrosion test, showed the presence of Ce oxy-hydroxide randomly deposited on the sample surface, indicating that Ce could be incorporated/stored in the anodic layer.  相似文献   

16.
Aluminium alloys such as AA2024 are susceptible to severe corrosion attack in aggressive solutions (e.g. chlorides). Conversion coatings, like chromate, or rare earth conversion coatings are usually applied in order to improve corrosion behaviour of aluminium alloys. Methacrylate‐based hybrid films deposited with sol–gel technique might be an alternative to conversion coatings. Barrier properties, paint adhesion and possibly self‐healing ability are important aspects for replacement of chromate‐based pre‐treatments. This work evaluates the behaviour of cerium as corrosion inhibitor in methacrylate silane‐based hybrid films containing SiO2 nano‐particles on AA2024. Hybrid films were deposited on aluminium alloy AA2024 by means of dip‐coating technique. Two different types of coating were applied: a non‐inhibited film consisting of two layers (non‐inhibited system) and a similar film doped with cerium nitrate in an intermediate layer (inhibited system). The film thickness was 5 µm for the non‐inhibited system and 8 µm for the inhibited system. Film morphology and composition were investigated by means of GDOES (glow discharge optical emission spectroscopy). Moreover, GDOES qualitative composition profiles were recorded in order to investigate Ce content in the hybrid films as a function of immersion time in 0.05 M NaCl solution. The electrochemical behaviour of the hybrid films was studied in the same electrolyte by means of EIS technique (electrochemical impedance spectroscopy). Electrochemical measurements provide evidence that the inhibited system containing cerium displays recovery of electrochemical properties. This behaviour is not observed for the non‐inhibited coating. GDOES measurements provide evidence that the behaviour of inhibited system can be related to migration of Ce species to the substrate/coating interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Al合金表面Ce转化膜成膜机理研究   总被引:1,自引:0,他引:1  
Ce转化膜作为一种Cr转化膜的理想替代品而日益受到人们的重视,但其成膜机理还不很清楚.本文应用自行研制的扫描微参比电极技术(SMRE),原位测量经CeCl3溶液处理的2024-T3 Al合金表面微区电位分布,并结合X光电子能谱(XPS)和交流阻抗谱(EIS),对Ce转化膜的成膜机理进行探讨.结果表明,在CeCl3溶液中,Ce转化膜的形成过程是 Ce3+和Cl-相互竞争的动态过程.当由Cl-的不均匀吸附引起的局部腐蚀使pH升高时, Ce(OH)3就会首先在局部位置发生沉积.阴极反应过程产生的H2O2可将Ce(OH)3部分氧化成CeO2.  相似文献   

18.
The electrochemical separation of uranium from cerium in LiCl–KCl eutectic and the electrochemical behavior of Ce(III) were studied. According to the cyclic voltammogram of Ce(III) and the former result of U(III), electrodeposition potential was determined at ?1.65 V (vs Ag/AgCl). The uranium metal was successfully deposited and separated from cerium. The morphology of deposit and cross section of electrode were investigated by SEM, firstly uranium deposit alloys with stainless steel and forms a thin transition layer, and secondly the uranium metal layer grows from the transition layer. The separation factors of uranium/cerium on different recovery ratios were determined through a series of steps. It was found that the content of cerium in the deposit and separation factors declined with increasing the initial concentration of U3+ in molten salts; the separation factors remained stable at around 20 in different uranium recovery ratios.  相似文献   

19.
铝金属基复合材料以其多方面的优异性能在航空、航天、汽车、电子和光学等工业领域中显示出了十分广泛的应用前景[1 ,2].某些种类的(如SiC颗粒增强)铝金属基复合材料已经开始走向工业规模的应用[3].然而,在铝金属基复合材料中由于增强体的存在使其内部组织结构极不均匀,在使用环境中极易形成腐蚀微电池而遭受点蚀、剥蚀、磨蚀等等腐蚀形式的破坏[4 ,5] .适用于常规铝合金防腐处理方法的阳极氧化法和铬酸盐化学氧化法(Alodine法)存在着下述弊端而不能对铝金属基复合材料起到有效的防腐作用:1)铝金属基复合…  相似文献   

20.
The steel samples have been coated with cerium layer by cathodic electrolytic deposition from the Ce(NO3)3·6H2O solution in aqueous ethyleneglycol in the presence of hydrogen peroxide. The influence of the coating parameters (cathodic current density, pH, cerium concentration, hydrogen peroxide concentration, temperature, and treatment duration) on the surface properties; the optimum conditions of the formation of corrosion preventing coating have been elucidated. Hydrogen peroxide concentration and pH are the major factors influencing the deposition process. The corrosion resistance has been further enhanced after treatment with Na3PO4·12H2O solution. The cerium-coated samples have been subsequently coated by cathodic electrostatic deposition from the colloidal solution of the paint. The coated materials have been subjected to mechanical testing (hardness, impact, cross cut, bending, and cupping tests), and their structure has been visualized by electron microscopy. The cerium coating has been found to improve the steel corrosion resistance by 15%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号