首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
过渡金属催化反应的蓬勃发展有力地推动了结构多样、功能丰富的炔类高分子的合成和应用研究.从炔烃单体出发合成炔类高分子经典的策略包括:(1)炔基碳氢(卤)键活化,对应偶联聚合;(2)金属卡拜或卡宾对碳碳三键的活化,对应复分解聚合.最近,我们课题组的工作引入了第三种模式,即通过炔丙位化学键的活化,形成联烯基金属物种,进而介导累积烯烃的原位生成并链式聚合,得到炔烃主链.本专论围绕以上3种反应模式,论述近年来具有代表性的炔类高分子合成方法新发展,并从机理的角度重点讨论新兴的链式聚合方法.  相似文献   

2.
柴云  许凯  李世豪  张普玉 《化学研究》2019,30(2):202-210
RAFT(Reversible addition-fragmentation chain transfer,可逆加成-断裂链转移)自由基存在链增长自由基与链转移剂(RAFT试剂)之间的可逆蜕化转移,现已广泛应用于聚合物分子结构设计及众多功能高分子材料的合成,受到众多高分子研究者的关注,是一种发展较快的可控/活性聚合技术.本文在简要介绍了RAFT聚合发展历程基础上,综述了RAFT聚合反应机理,RAFT试剂的结构及其对聚合性能的影响,RAFT试剂与单体的匹配性,RAFT聚合实施方法等.同时也对RAFT聚合反应的发展进行了展望.  相似文献   

3.
本文以粘度法研究在苯溶剂中,ε-己内酯负离子开环聚合过程,增长链活性种烷氧基锂(—O~-Li~+)的缔合,发现己内酯活性种的缔合和一般非极性单体不同,前者在聚合过程中(单体消耗完以前)并不发生缔合。在单体消耗完以后,聚己内酯活性种才确实以缔合体的形式存在。这是由于内酯本身贡献了强的溶剂化作用。  相似文献   

4.
苯乙烯阴离子本体聚合引发剂缔合及其机理的研究   总被引:1,自引:0,他引:1  
分别以正丁基锂和叔丁基锂为引发剂,采用自制管式流动反应装置,对较高温度下苯乙烯阴离子本体聚合动力学进行了研究.证实了正丁基锂主要以六元缔合结构形式引发聚合,并导致超分子团聚体的形成,从而使进一步的聚合因单体扩散受阻而受到限制,并伴随聚合转化率停滞平台(SCP)的产生.随后由于前期聚合累积的能量,使超分子结构完全解离.聚合温度越高,SCP持续时间越短.结果还表明,在正丁基锂引发剂中,存在一个以六元缔合结构为基础形成的更大的缔合体结构.原子力显微镜照片显示,超分子结构的直径分别为20~30nm和50~60nm.此外,在阴离子聚合过程中活性种的缔合结构只决定于初始引发剂的分子结构,而不同活性种缔合结构对阴离子聚合的链增长存在很大影响,从而解释了采用不同结构的锂系引发剂引发苯乙烯单体聚合时聚合速率存在巨大差异的原因.  相似文献   

5.
在等离子体引发的液态丙烯酸酯类单体聚合体系中加入大量链转移剂乙硫醇,得到了端基带有引发活性种的低聚物,利用气相色谱-质谱的多离子检测手段,测定了活性种的结构,结果表明:引发活性种是单体在等离子体区裂解生成的酯基碎片[-C—O—R].进而解释了丙烯酸酯类单体可以由等离子体引发聚合,而苯乙烯不能引发聚合的问题.  相似文献   

6.
石建兵  蔡政旭 《化学通报》2020,83(12):1159-1163
开环聚合作为与缩聚、加聚并列的第三大类聚合反应,具有如下特点:基于环状单体的特殊性,开环聚合反应无副产物生成;聚合物组成与单体的元素组成相同,即具有100%的原子利用率;大部分开环聚合反应具有连锁反应特征,链增长速度快;形成的聚合物链中含有杂原子,所得材料具有降解可控性。本文总结了近年来在开环聚合研究上的一些进展,如γ-丁内酯的成功开环聚合、活性开环聚合、易位开环聚合等,为本科生《高分子化学》课程中的“开环聚合”一章内容的有益补充。通过提供额外的一些参考文献来拓展本科生对前沿知识的了解,开阔优秀本科生的国际学术视野。  相似文献   

7.
在链增长聚合过程中,有效控制聚合活性中心的"开"、"关"能够对特定结构和功能的聚合物合成实现"定制裁剪"。当活性中心能够进行"锁闭(Locked)"和"解锁(Unlocked)"状态便捷可控的转换,即可在特定位置实现特定单元的插入。近期,大连理工大学马红卫等在活性阴离子聚合领域开展了活性中心定量"开-关"聚合机理研究。基于烷氧硅基DPE(DPE-Si(O-iPr)_3,DPE:1,1-二苯基乙烯)以及醇钠(NaODP)来实现活性阴离子聚合体系活性中心的定量"开-关",在活性阴离子聚合机理方面取得的这一进展能够为阴离子聚合理论研究带来新的发展,同时也为高分子链结构的精密调控提供了更广阔的前景。  相似文献   

8.
用NaNO2/FeSO4·7H2O体系替代TEMPO在有机相中合成分子量可控的聚苯乙烯大分子引发剂,引发苯乙烯聚合及酯类单体[如甲基丙烯酸甲酯(MMA)、丙烯酸甲酯(MA)和丙烯酸乙酯(EA)等]聚合,得到两嵌段共聚物.其多分散性指数小于1.5,体现了可控聚合的特征.用大分子引发剂引发苯乙烯进行活性链增长,单体的转化率较高.嵌段共聚物的实测分子量与理论分子量相近,结构经1HNMR和GPC表征.NaNO2/FeSO4·7H2O体系在纯有机相中的应用降低了活性聚合的成本,有利于工业化应用.  相似文献   

9.
甲基丙烯酸丁酯的反向ATRP“活性”/可控自由基聚合研究   总被引:2,自引:0,他引:2  
自由基聚合以其可聚合的单体种类多、反应条件温和易控制、实现工业化生产容易等优点一直在高分子合成领域占有重要地位,而实现自由基“活性”/可控聚合更是高分子化学工作者孜孜以求的目标之一.然而由于自由基非常活泼,在反应过程中极易发生偶和、歧化终止和链转移等副反应,使自由基活性聚合的实现变得非常困难.1995年Matyjaszewski等[1]提出的原子转移自由基聚合(Atom transfer radical polymerization,ATRP)的概念为自由基活性聚合研究开辟了一条崭新的途径.ATRP反应过程如反应式1所示  相似文献   

10.
本文研究了以正丁基锂为引发剂,四氢呋喃为添加剂,环己烷为溶剂中的α-甲基苯乙烯阴离子平衡聚合动力学。讨论了体系中的反应活性种;提出了聚合机理;得到了聚合温度为20℃时的平衡单体浓度与活性种速率常数及添加剂浓度之间的关系式。  相似文献   

11.
An unprecedented level of control for the radical polymerization of vinylidene fluoride (VDF), yielding well‐defined PVDF (at least up to 14 500 g mol?1) with low dispersity (≤1.32), was achieved using organometallic‐mediated radical polymerization (OMRP) with an organocobalt compound as initiator. The high chain‐end fidelity was demonstrated by the synthesis of PVDF‐ and PVAc‐containing di‐and triblock copolymers. DFT calculations rationalize the efficient reactivation of both head and tail chain end dormant species.  相似文献   

12.
The use of dormant species has opened a new era in precision polymerization and has changed the concept of living polymerization. The dormant species can be exchanged into the active species via reversible termination or via reversible chain transfer. Professor Mitsuo Sawamoto has greatly contributed to the establishment of the concepts of living cationic and radical polymerizations based on the reversible activation of dormant species. This highlight, dedicated to Professor Sawamoto on his retirement from Kyoto University, provides an overview of reversible or degenerative chain‐transfer (DT) processes, which are effective in controlling all chain‐growth polymerizations, including radical, cationic, anionic, coordination, ring‐opening metathesis, and ring‐opening polymerizations. In addition, structures with novel sequences accessible only by a combination of different propagating species with a common DT agent are reviewed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 243–254  相似文献   

13.
The 1,1‐diphenylethene (DPE) controlled radical polymerization of methyl methacrylate was performed at 80 °C by using AIBN as an initiator and DPE as a control agent. It was found that the molecular weight of polymer remained constant with monomer conversion throughout the polymerization regardless of the amounts of DPE and initiator in formulation. To understand the result of constant molecular weight of living polymers in DPE controlled radical polymerization, a living kinetic model was established in this research to evaluate all the rate constants involved in the DPE mechanism. The rate constant k2, corresponding to the reactivation reaction of the DPE capped dormant chains, was found to be very small at 80 °C (1 × 10?5 s?1), that accounted for the result of constant molecular weight of polymers throughout the polymerization, analogous to a traditional free radical polymerization system that polymer chains were terminated by chain transfer. The polydispersity index (PDI) of living polymers was well controlled <1.5. The low PDI of obtained living polymers was due to the fact that the rate of growing chains capped by DPE was comparable with the rate of propagation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

14.
Non‐transition metal‐catalyzed living radical polymerization (LRP) of vinyl chloride (VC) in water at 25–35 °C is reported. This polymerization is initiated with iodoform and catalyzed by Na2S2O4. In water, S2O dissociates into SO that mediates the initiation and reactivation steps via a single electron transfer (SET) mechanism. The exchange between dormant and active propagating species also includes the degenerative chain transfer to dormant species (DT). In addition, the SO2 released from SO during the SET process can add reversibly to poly(vinyl chloride) (PVC) radicals and provide additional transient dormant ~SO radicals. This novel LRP proceeds mostly by a combination of competitive SET and DT mechanisms and, therefore, it is called SET‐DTLRP. Telechelic PVC with a number‐average molecular weight (Mn) = 2,000–55,000, containing two active ~CH2? CHClI chain ends and a higher syndiotacticity than the commercial PVC were obtained by SET‐DTLRP. This PVC is free of structural defects and exhibits a higher thermal stability than commercial PVC. SET‐DTLRP of VC is carried out under reaction conditions related to those used for its commercial free‐radical polymerization. Consequently, SET‐DTLRP is of technological interest both as an alternative commercial method for the production of PVC with superior properties as well as for the synthesis of new PVC‐based architectures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6267–6282, 2004  相似文献   

15.
The impact of reversible bond formation between a growing radical chain and a metal complex (organometallic‐mediated radical polymerization (OMRP) equilibrium) to generate an organometallic intermediate/dormant species is analyzed with emphasis on the interplay between this and other one‐electron processes involving the metal complex, which include halogen transfer in atom transfer radical polymerization (ATRP), hydrogen‐atom transfer in catalytic chain transfer (CCT), and catalytic radical termination (CRT). The challenges facing the controlled polymerization of “less active monomers” (LAMs) are outlined and, after reviewing the recent achievements of OMRP in this area, the perspectives of this technique are analyzed.  相似文献   

16.
A series of selenium‐substituted carbonates, S,Se‐dibenzyl dithioselenocarbonate (DTSC), S,Se‐dibenzyl thiodiselenocarbonate (TDSC), and Se,Se‐dibenzyl triselenocarbonate (TSC), were synthesized and used as mediators in radical polymerization. The results indicate that these selenium‐substituted carbonates can control the polymerization of styrene (St) and methyl acrylate, as evidenced by the number‐average molecular weight that increased linearly with the monomer conversion, molecular weights that agreed well with the predicted values, and successful chain extensions. The treatment of the resultant polystyrene by hydrogen peroxide generated polymers with approximately half‐reduced molecular weights, and the absence of carbonate groups and vinyl double bond‐terminated chain ends. The polymerization with these selenium‐substituted carbonates was the same polymerization mechanism as their analogue, the widely used S,S‐dibenzyl trithiocarbonate. This work provided a flexible protocol to incorporate selenium into the polymer chain backbone. Specifically, the treatment of these polymers by oxidation produced “clickable” vinyl‐terminated chain ends, which provided possibilities for further functionalization, for example, via a thiol‐ene click reaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2606–2613  相似文献   

17.
A detailed model describing the kinetics of living polymerization mediated by reversible addition‐fragmentation chain transfer (RAFT) in seeded emulsion polymerization is developed. The model consists of a set of population balance equations of the different radical species in the aqueous phase and in the particle phase (accounting for radical segregation) as well as for the dormant species in the particle phase. The entire population of radicals was divided into several distinguished species, based on their length and their chain end group. The model results are helpful in understanding inhibition and retardation phenomena that are typical for RAFT emulsion polymerizations. While inhibition is due to the radical loss in form of the RAFT leaving group, retardation is mostly caused by a small amount of short dormant chains in the particle phase, leading to a slight increase of radical loss via RAFT exchange with radicals entering a particle. The model results are compared to a series of experiments, using cumyl dithiobenzoate as a RAFT agent in polymerizations of styrene. The agreement between experimental and model results is good and, notably, the only parameters considered adjustable were the RAFT exchange rate coefficients. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6114–6135, 2006  相似文献   

18.
A novel dithioester control agent [dimethyltetrathioterephtalate (DMTTT)] is presented for the thioketone‐mediated radical polymerization (TKMP) of n‐butyl acrylate. The rate of polymerization is significantly decreased in the presence of DMTTT indicating formation of dormant radical species. During polymerization, molar masses increase linearly with monomer conversion with reasonably narrow initial molar mass distributions (PDI between 1.3 and 1.8), whereas the dispersity increases during the course of the polymerization due to irreversible termination of both propagating and dormant radicals. The present results thus highlight the possibility of a mixed mechanism operating in RAFT polymerization, which combines slow fragmentation (long‐lived intermediates) and intermediate radical termination.  相似文献   

19.
TiCl4,共引发异丁烯(1B)或苯乙烯(St)进行正离子聚合,聚合反应速率与共引发剂TICl4之间可呈一级和二级动力学关系,这与TiCl4浓度([TiCl4])、单体浓度、亲核试剂的亲核性等多方面因素有关。单分子TiCl4与休眠分子链末端进行离子化反应并产生活性中心碳正离子和反离子TiCl5^-,TiCl5^-与另一个TiCl4分子进一步反应则形成双分子反离子Ti2Cl9^-,导致TiCl4表现为二级动力学关系的机理。  相似文献   

20.
A facile catalytic chain transfer polymerization (CCTP) technique has been developed to synthesize covalently linked CdS nanocrystal-polymer hybrids with good optical properties. The in situ polymerization of methyl methacrylate (MMA) on the surface of modified CdS nanocrystals (NCs) with diameter of 5 nm via CCTP process yielded CdS-polymethylmethacrylate (PMMA) hybrid nanocomposites; while the incorporation of hydroxyl-coated CdS NCs into poly(methacryloxypropyltrimethoxysilane) (PMPS)-co-PMMA matrices prepared by CCTP afforded CdS-PMPS-co-PMMA hybrid nanocomposites, which were further cross-linked by free radical polymerization to form CdS NC-polymer network. The spectroscopic studies indicate that as-prepared CdS NC-polymer hybrids show good photoluminescence (PL) and the NC-polymer network exhibits highly enhanced PL property with respect to that before cross-linking. Also described are the probable mechanism for the catalytic chain transfer polymerization on the surface of modified nanocrystal and the measurement of chain transfer constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号