首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
在亲核试剂(ED)如吡啶(Py)、N,N-二甲基乙酰胺(DMA)或三乙胺(TEA)存在下,由引发剂H2O和共引发剂TiCl4组成引发体系,在二氯甲烷/正己烷混合溶剂中进行异丁烯(IB)正离子聚合,考察了溶剂极性、聚合温度及异丁烯浓度对聚合反应转化率、产物分子量和分子量分布的影响.试验结果表明,随聚合体系溶剂极性增大,聚合速率加快,相近转化率时聚合产物的分子量分布变窄.随着聚合温度降低,聚合速率明显提高,聚合物的分子量增加,活化能为负值,活性链端发生链转移或链终止等副反应的几率减小,当聚合温度为-60℃时,可以抑制活性链端的β-H脱除反应和链转移副反应,并得到大分子链末端全部为叔氯基团的聚异丁烯(PIB).当[IB]0≤2.5mol/L时,随[IB]0增加,聚合转化率有所增加,聚合产物的GPC谱图均为单峰分布,分子量增大,而分子量分布基本保持不变,对于加入Py的聚合体系,分子量分布指数在1.33~1.45范围内,对于加入TEA的聚合体系,分子量分布指数在1.47~1.60范围内,并求出在加入Py和TEA的聚合体系中活性链向单体的链转移常数CM分别为5.5×10-4和6.6×10-4.  相似文献   

2.
研究了在少量吡啶(Py)存在下由水(H2O)四氯化钛(TiCl4)体系引发苯乙烯于二氯甲烷正己烷中进行碳正离子聚合,分别考察[Py]、[H2O]和[TiCl4]对聚合速率、产物分子量与分子量分布的影响.实验结果表明,少量亲核试剂吡啶(Py)对聚合反应起着重要作用,可有效地降低聚合速率和使分子量分布变窄;随着[H2O]和[Py]降低或[TiCl4]增加,聚合产物的分子量增加,而分子量分布指数(Mw Mn)基本维持在1.8左右;随着[Py]增加,聚合速率降低;随着[H2O]和[TiCl4]增加,聚合速率提高.聚合速率对单体浓度呈一级动力学关系,对Py、H2O和TiCl4的反应级数分别为-0.72、0.72和1.86.聚合速率对TiCl4浓度呈接近二级动力学关系,这可能与体系中TiCl4主要以二聚体形式存在有关.聚合转化率和产物分子量均随着反应时间延长而逐渐增大,PS的数均分子量与转化率呈线性增加关系.  相似文献   

3.
采用称量法和GPC,研究了以二甲基乙酰胺为溶剂,偶氮二异丁腈为引发剂,自由基溶液聚合制备含芳酰胺结构的新型甲壳型液晶高分子聚[乙烯基对苯二甲酸二(4-甲氧基苯胺)](PMPACS)的聚合反应动力学.研究发现,(1)MPACS的聚合反应在60℃时主要为双基偶合终止,所以反应后期聚合物分子量明显增大,分子量分布变窄;(2)该反应的聚合反应速率方程为Rp=kp[M][I]1/2,表观活化能Eα=44 kJ/mol,在60℃时的聚合反应常数kp=1.04 L·mol-1·h-1;(3)相同聚合条件下,单体的转化率和数均分子量随单体初始浓度[M]0的增加而增大,当引发剂浓度[I]0增加时,聚合物的分子量随之降低,分子量分布增大;(4)该研究虽采用普通自由基聚合,所得聚合物的分子量分布却较窄,仅为1.1~1.4.  相似文献   

4.
稀土Schiff碱配合物催化烷基异氰酸酯室温聚合   总被引:1,自引:0,他引:1  
利用Schiff碱稀土配合物Ln(H2Salen)2Cl3·2C2H5OH与AI(i—Bu)3组成的催化体系催化烷基异氰酸酯室温聚合,详细考察了催化剂组成以及聚合条件等对烷基异氰酸酯聚合的影响,并研究了己基异氰酸酯的聚合动力学.以La、Nd、Sm和Gd四种稀土元素为代表,合成了相应的Schiff碱配合物,结果表明轻稀土体系比重稀土体系好,La的聚合活性最高.在-40℃-40℃很宽的聚合温度范围内,可以得到分子量分布窄(MWD=1.50~2.40)的高分子量聚异氰酸酯,20℃为最佳的聚合温度.己基异氰酸酯的最佳聚合条件为:[AI]/[La]=30(摩尔比),[n-HexNCO]/[La]=100,[n—HexNCO]=3.43mol/L,甲苯溶液中20℃聚合12h,聚合物收率74.0%,聚合物黏均分子量高达73.5×10^4,数均分子量40.2×10^4,MWD=1.79.聚合动力学研究表明己基异氰酸酯聚合反应对单体浓度和催化剂浓度都是一级关系,聚合反应活化能为43.64kJ/mol.  相似文献   

5.
以对叔丁基杯[6]芳烃和异丙氧基钪为原料, 合成了对叔丁基杯[6]芳烃钪配合物, 该配合物可在温和条件下单组分引发2,2-二甲基三亚甲基环碳酸酯(DTC)开环聚合, 制备重均分子量为33700, 分子量分布为1.21的聚合产物. 动力学研究表明该聚合反应对单体和催化剂浓度均呈一次方关系, 表观活化能为22.7 kJ/mol; 通过1H NMR研究聚合物端基, 表明单体的开环机理为Sc-O活性中心引发的酰氧键断裂开环.  相似文献   

6.
超高分子量聚苯乙烯的合成和聚合反应动力学   总被引:6,自引:0,他引:6  
杯芳烃钕与Mg(n Bu) 2 、HMPA所组成的三元络合催化剂用于苯乙烯配位聚合能以高收率制得超高分子量聚苯乙烯 .以甲苯为溶剂 ,在一定条件下制成三元配位催化剂 ,当 [Nd]=8× 10 - 4mol L ,[St]=4 .0mol L ,Mg Nd =2 0 .0 (摩尔比 ) ,HMPA Mg =1.0 (摩尔比 ) ,5 0℃聚合 4 5min ,聚合转化率可达到 80 %左右 .所得聚苯乙烯的重均分子量高达 2 10× 10 4 ,分子量分布指数为 1.6 1.间规聚苯乙烯含量为 81% .动力学研究表明 ,聚合反应速率与单体和主催化剂 杯 [6 ]芳烃钕的浓度分别呈 1次方关系 ,聚合反应的表观活化能为 4 1.7kJ mol  相似文献   

7.
对用(NH4)2S2O8-环己酮NaHSO2加合物新型氧化还原体系引发的醋酸乙烯酯聚合过程进行研究,求得该聚合反应的表观活化能为84.6kJ/mol,并测定了聚合产物的粘均分子量.  相似文献   

8.
许胜 《分子催化》2012,26(6):537-545
以SiO2为载体,制备了负载的双核茂金属[(η5-C5H5)Zr Cl2]2[μ,μ-(SiMe2)2(η5-allyl C5H2)2]/MAO/SiO2催化剂,以己烷为溶剂进行了淤浆条件下乙烯聚合反应,研究了扩散因素、乙烯聚合压力和聚合温度对乙烯淤浆聚合动力学参数的影响,测定了聚合反应级数和表观活化能,采用动力学和相对分子质量法计算了负载催化剂的活性中心浓度,并对链增长速率常数等动力学参数进行了计算.结果表明,以负载双核茂金属催化剂催化乙烯淤浆聚合反应速率对单体浓度呈1.11级依赖,反应活化能Ea为72.47 kJ/mol,活性中心浓度C*为0.33 mol/mol,链增长速率常数Kp为1.06×106L.(mol.h)-1.  相似文献   

9.
研究了含水介质中,以枯基醇(CumOH)/三氟化硼(BF3)为引发体系的苯乙烯正离子聚合的特征,探讨了CumOH用量、体系中的水含量对苯乙烯正离子聚合转化率、聚合速率以及产物分子量及其分布的影响;并从分子模拟、分子量末端结构等角度探讨含水介质中苯乙烯正离子聚合的反应机理.结果表明,[H2O]≤0.11 mol/L条件下,苯乙烯正离子聚合具有可控聚合的特征;水对聚合速率、单体转化率以及分子量影响较小;[H2O]>0.11 mol/L,正离子聚合不能顺利进行.根据计算结果,CumOH/BF3引发体系相对于CumOH/H2O引发体系在参与引发所需要的活化能垒更小,说明CumOH/BF3更容易引发苯乙烯正离子聚合,这与实验结果一致.CumOH/BF3引发体系是通过活化C—O键来引发苯乙烯正离子聚合,水作为可逆终止剂有利于进行可控聚合,并得到了末端含有羟基的聚合物.  相似文献   

10.
- 4 0℃条件下 ,在 CH2 Cl2 溶剂中以α-氯代乙苯为引发剂 ,Ti Cl4 和 Ti( Oi Pr) 4混合物为 Lewis酸活化剂 ,进行β-蒎烯阳离子聚合 .单独使用强的 Lewis酸 Ti Cl4 时 ,聚合反应在瞬间完成 ,聚合产物的分子量分布较宽 .添加本身无催化活性的弱 Lewis酸 Ti( Oi Pr) 4后 ,聚合反应减缓且聚合产物的分子量分布变窄 .当Ti( Oi Pr) 4/Ti Cl4 摩尔比为 1 /3时 ,产物的分子量随单体转化率线性增加 ,且分子量分布较窄 ,显示出活性聚合特性 .这种活性聚合特性由单体添加实验进一步得到证实  相似文献   

11.
甲基丙烯酸甲酯的原子转移自由基悬浮聚合   总被引:3,自引:0,他引:3  
以 1 苯基氯乙烷为引发剂 ,氯化亚铜为催化剂 ,2 ,2 联吡啶为配体 ,外加搅拌 ,氮气保护下进行了甲基丙烯酸甲酯 (MMA)在 80℃下的原子转移悬浮聚合 .结果表明 ,聚合反应符合对单体浓度为一级的动力学关系 .经计算聚合体系的增长自由基浓度为 5 .74× 10 - 8mol L .聚合物分子量随转化率呈线性增加 ,分子量分布较窄 ,Mw Mn 在 1.37~ 1.40之间 .还以AIBN为引发剂 ,在三氯化铁和三苯基膦存在下进行了MMA的反向原子转移本体和悬浮聚合研究 .结果证明本体聚合具有好的可控特征 ,分子量随转化率呈线性增长 ,分子量分布指数在 1.2 7~ 1.31之间 .聚合反应速率较快 ,聚合体系中的增长自由基浓度较高 ,为 1.6 4× 10 - 7mol L .而在此催化体系下的悬浮聚合则完全失去了活性特征  相似文献   

12.
通过氯化镧与Schiff碱钠盐(NaSalen)的交换反应制备了4种镧的Schiff碱配合物La(HSalen1-4)3,对其中以3,5-二叔丁基水杨醛缩苯胺为配体的配合物La(HSalen2)3进行了X-射线单晶衍射分析,测定其单晶结构为五角双锥构型,七配位的镧金属中心与氮和氧原子相连.将所得的La(HSalen)3...  相似文献   

13.
<正> 甲基丙烯酸2-羟乙酯(HEMA)是一带有羟基的功能性单体,它可以在自由基聚合引发剂如过氧化苯甲酰、偶氮二异丁腈、过氧化二碳酸二异丙酯或氧化还原引发体系过硫酸盐-乙酸二甲胺基乙酯的作用下进行自由基聚合,我们已报道带有羟基的单体如HEMA、甲基丙烯酸羟丙酯(HPMA)及甲基丙烯酯3-甲氧基-2-羟丙酯(MHPMA)可用  相似文献   

14.
单茂钛催化剂的丙烯无规聚合反应及其动力学研究   总被引:4,自引:1,他引:4  
比较了不同钛化合物/甲基铝氧烷(MAO)催化体系的丙烯无规聚合,催化活性次序为CpTi(OR)3>CpTi(OPh)3>CpTiCl3>Cp2TiCl2>Ti(OBu)4>TiCl4>Ti(OBu)2Cl2,所得聚丙烯用沸庚烷抽提8h,溶解95%以上,可溶部分经13C NMR、WADX、FTIR等分析证明为无规聚丙烯(aPP),是没有结晶性的弹性体.GPC测出其分子量Mw=8.0~10.0×104,Mw/Mn≈2.0.探索了催化体系CpTi(O n Pr)3/MAO中钛的浓度、[Al]/[Ti]摩尔比,丙烯聚合压力,聚合温度和时间对丙烯聚合反应的影响.研究了该催化体系丙烯聚合反应动力学规律,表观聚合反应速率对催化剂浓度和单体压力(浓度)都呈一级反应关系,表观聚合速率常数KP=292×105mol/L·h(40℃).活化能ΔE=-7.88×103J·mol-1,碰撞因子A=1.41×10-4mol/L·h.  相似文献   

15.
以Ni(COD)2和含磷、氧配体为催化剂,利用乳液聚合法合成了间规聚苯乙烯.对产物进行了13C-NMR、1H-NMR、GPC、TEM、DSC、TG等表征.在此反应体系下,最佳聚合条件为:乳化剂用量为1.50 g,[St]0=1.79 mol·L-1,T=60℃,t=2h,[Ni(COD)2]=1.102 mmol·L-...  相似文献   

16.
茂金属催化烯烃聚合的活性中心被认为是1 4电子结构的金属阳离子配合物 [Cp2 MR]+ (R为烷基 ) ,并且金属中心的Lewis酸性和周围茂配体的空间构型对其催化活性及聚合产物的结构有直接的影响[1,2 ] .然而 ,茂金属须大量MAO存在下才能显示高活性 ,并且其稳定性较差 ,这都一定程度上限制了茂金属催化剂的实际应用 .近几年来 ,将含非环戊二烯基配体的金属配合物应用于烯烃均相聚合的研究大量出现[3] ,其中非环戊二烯基配体有含氮化合物[4~ 9] 和含氧化合物[10~ 15] 等 ,这些非茂配合物可催化乙烯或丙烯聚合 ,但活性一般较低 .茂金…  相似文献   

17.
杯[4]芳烃钛-Al(iBu)_3催化乙烯聚合   总被引:4,自引:2,他引:2  
众所周知 ,茂金属催化剂用于烯烃聚合 ,不仅具有高的催化活性 ,而且能制得高规整度聚合物 ,在理论研究和工业应用中都有十分重要的意义 ,国际上已形成对茂金属催化剂的研究热潮 .人们在致力于研究茂金属催化剂的同时 ,并没有停止对非茂金属均相催化剂的研究 ,其中酚氧基钛、锆配合物的优良催化性能尤为引人注目 ,这类新型均相催化剂能高效地催化烯烃均聚[1 ] ,苯乙烯间规聚合[2 ] ,乙烯 苯乙烯共聚等[3] .杯芳烃是由若干个对叔丁基苯酚通过亚甲基经 2 ,6位连接而成的一类环状大分子 ,其结构与酚氧类配体相似 .李勇等曾发现杯芳烃钛化合物与…  相似文献   

18.
杂多酸引发四氢呋喃聚合反应   总被引:7,自引:4,他引:7  
八十年代中、后期发现,杂多酸(HPA)是阳离子聚合反应的良好引发剂[1,2].HPA是一类酸强度比浓硫酸还高的质子酸[3],不仅具有易于制备,结构稳定,腐蚀性低,易溶于大多数有机溶剂的特点,更为重要的是,HPA可以回收和重复使用.因此,HPA作为一类...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号