首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
李云兰  宁美英  李青山 《色谱》2007,25(2):282-283
建立了正相高效液相色谱测定有机金属抗癌原料药二氯二茂钛含量的方法。色谱条件为:以Lichrosorb-CN柱(4 mm×250 mm,5 μm)为分离柱,正己烷-二氯甲烷(体积比为50∶50)为流动相,流速为1 mL/min,紫外检测波长为254 nm,柱温为25 ℃。以ω-溴代苯乙酮为内标测定二氯二茂钛原料药的含量。样品中待测组分与内标物分离良好,线性范围为2.5~50 mg/L,日内和日间测定的精密度(以相对标准偏差(RSD)计)均小于1.0%。方法简便、快速,结果准确,专属性强,灵敏度高,可用于测定有机金属类抗癌原料药二氯二茂钛的含量。  相似文献   

2.
建立了基于高效液相色谱(HPLC)测定淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的方法。通过优化得到最佳样品前处理条件为乙醇体积分数5%,超声时间10 min。色谱分离检测的最佳分析条件为:流动相:甲醇-1‰磷酸(2∶98),色谱柱:Plastisil ODS C18(250 mm×4.6 mm,5μm),检测波长214 nm,流速1.0 mL/min,柱温30℃。该方法对顺丁烯二酸的定量下限为5.0 mg/kg,线性范围为0.25~100 mg/L,相关系数为0.999 7,平均加标回收率为88%~89%,相对标准偏差(n=5)小于2%,能够满足实际检测需要。  相似文献   

3.
邓金  肖正华  张惠静  张梦军  汤建林 《色谱》2007,25(6):942-943
建立了测定人血浆中巴洛沙星含量的固相萃取高效液相色谱紫外检测方法。采用pH 4.5的磷酸盐缓冲液并经Waters Oasis HLB固相萃取小柱对血浆样品进行预处理。以环丙沙星作内标,以十二烷基磺酸钠溶液(取560 mL水加入3.2 g十二烷基磺酸钠)-乙腈(体积比为56∶44,用磷酸调pH至3.0)为流动相,在Diamonsil C18色谱柱(150 mm×4.6 mm,5 μm)上进行分离。方法的线性范围为25~3200 μg/L,线性关系良好(r=0.9996);巴洛沙星的检出限(S/N≥3)为5 μg/L;方法的准确度为100.3%~103.8%;平均提取回收率为57.5%~77.0%,相对标准偏差小于5.1%。方法准确、灵敏,可满足血药浓度监测和药代动力学参数测试的需求。  相似文献   

4.
建立了气相色谱-微池电子俘获检测器(GC-μECD)快速定量分析SF_6的方法。采用十通阀进样,以相同规格的5?分子筛柱作为分离柱和分析柱,通过气阻稳流、分离柱与分析柱前端压力的匹配解决了色谱分析基线的波动;通过阀切换除氧技术提高了SF_6气相色谱分析速率。结果表明,在优化的试验条件下,单个气体样品的分析时间为1.0 min,SF_6的体积比在1.51×10~(-12)~4.97×10~(-8)L·L~(-1)内与其峰高呈线性关系,检出限(3S/N)为1.30×10~(-12) L·L~(-1),测定下限(10S/N)为4.80×10~(-12)L·L~(-1)。采用所建立的方法连续10次分析环境空气样品,SF_6测定结果的相对标准偏差为0.61%。  相似文献   

5.
采用顶空-气相色谱法快速测定化工固体废物中16种挥发性有机物的含量。顶空加热平衡温度为80℃,顶空加热平衡时间为30min。用HP-FFAP色谱柱(30m×0.32mm,0.25μm)分离,氢火焰离子化检测器检测。16种挥发性有机物的的质量浓度在一定范围内与其对应的峰高呈线性关系,方法的检出限为0.001~0.009mg·L~(-1)。方法用于化工固体废物样品的分析,加标回收率为82.5%~115%,测定总量的相对标准偏差(n=6)为1.9%~9.1%。  相似文献   

6.
黄冬梅  钱蓓蕾  于慧娟 《色谱》2007,25(6):953-954
建立了气相色谱-氮磷检测器测定贝类产品中三唑磷残留量的方法。采用HP-5毛细管色谱柱(30 m×0.25 mm×0.25 μm)分离。采用二氯甲烷提取、正己烷去脂和反萃取的方法处理样品。方法的线性范围为0.05~10 μg/L,检测限为10 μg/kg,回收率高于80%,相对标准偏差低于10%。  相似文献   

7.
陈爱连  方琳美  吕海霞  施超欧 《色谱》2017,35(5):538-543
建立一种在线固相萃取-离子色谱测定4种芳环磺酸盐中硫酸根离子含量的新方法。将自装填的多孔石墨化碳固相萃取柱应用于离子色谱系统,对样品进行在线前处理。样品经过多孔石墨化碳固相萃取柱基体消除后进入收集环,通过阀切换方式使待测硫酸根离子转入阴离子分析柱和检测系统。固相萃取流路用1.5 mmol/L碳酸钠以0.8 mL/min的流速对基体在线富集,进样量为20μL,分析柱为SH-AC-3(250 mm×4.0 mm)+SH-AG-3(50 mm×4.0 mm)色谱柱,柱温为35℃,在6 mmol/L碳酸钠-4 mmol/L碳酸氢钠条件下等度洗脱,流速为0.8 mL/min。结果表明:硫酸根离子在0.50~20.00 mg/L范围内呈良好的线性关系,线性相关系数为0.998 3,保留时间、峰高和峰面积的相对标准偏差均在0.28%~2.86%之间,方法检出限为0.010 6 mg/L,回收率为91.01%~109.3%,具有良好的线性关系和重复性。整个在线分析过程在25 min之内完成。该方法进样量少、快速、高效。  相似文献   

8.
建立了快速液相色谱-质谱/质谱联用法测定吡罗昔康制剂中吡罗昔康含量的方法。样品以0.1 mol/L盐酸甲醇溶液提取、微孔滤膜过滤、离心后,通过电喷雾离子化(ESI),采用多反应检测(MRM)方式进行正离子检测,用于定量分析的检测离子为m/z 332.2→94.8。采用Shim-pack XR-ODS(3.0 mm×75mm,2.0μm)柱分离,以乙腈-水-甲酸(60:40:0.1,V/V/V)为流动相,流速为0.40 mL/min,在3 min内完成吡罗昔康定量分析。线性范围为2.5~1000.0ng/mL,最低检测限为2.5 ng/mL;日内测定的相对标准偏差小于3.2%,日间测定的相对标准偏差小于3.8%。方法可作为吡罗昔康制剂的质量中吡罗昔康控制方法,并可用于少量血浆样品的测定,也适用于药物代谢动力学研究。  相似文献   

9.
甄铧  蒲尚饶  马明东  刘均利 《色谱》2007,25(6):944-945
建立了朱砂根中朱砂根皂苷的反相高效液相色谱分析方法。采用SHIM-PACK VP-ODS色谱柱(250 mm×4.6 mm,5 μm),流动相为乙腈-水(体积比为37∶63),流速1.0 mL/min,检测波长205 nm,柱温40 ℃。朱砂根皂苷的进样量为144 ng~57.6 μg时线性关系良好(r=0.9997);加标回收率(n=3)为94.2%~99.4%,相对标准偏差为0.5%~2.0%。方法简便,准确性高,重复性好,适用于朱砂根中朱砂根皂苷的测定。  相似文献   

10.
建立了以4-溴甲基-7-甲氧基香豆素(BrMMC)为柱前荧光衍生试剂,反相高效液相色谱荧光检测(HPLC-FLD)生物检材中氟乙酸钠的分析方法。采用Hewlett Packard RP-18色谱柱,以甲醇-水(60/40,V/V)为流动相,流速1.0 mL/min,柱温26℃,荧光检测:eλx=319 nm,eλm=390 nm,进样量2μL。结果表明:该法在氟乙酸钠含量为0.1~20μg/mL范围内与其峰面积呈良好的线性关系,线性相关系数为0.9996,检出限(S/N=3)为5×10-10mol/mL,相对标准偏差(RSD)小于4%。本法用于中毒死亡者的血液样品及其它检材的测定,效果良好。  相似文献   

11.
ICP-AES测定铀污染土壤植物中铀的研究   总被引:2,自引:0,他引:2  
采用电感耦合等离子体发射光谱(ICP-AES)对铀污染土壤植物中铀的测定方法进行了研究.在λU385.958 nm处,选择了仪器的最佳工作条件,考察了酸度和常见共存元素对测定的干扰情况,并且对比了干灰化消解和湿式消解对测定的影响.研究发现2%硝酸溶液为最佳介质,干扰离子对测定没有显著影响,干灰化消解比湿式消解得彻底.在选定条件下,方法检出限为0.18 mg·L-1,测定下限为0.61 mg·L-1,5.0000 mg·L-1的铀标准溶液的相对标准偏差RSD(n=10)为0.81%,方法回收率为96.2%~106.2%.该方法操作简单,快速.结果表明,用ICP-AES测定铀污染土壤植物样品中的铀是可行的.  相似文献   

12.
对血清中Na离子含量的测量不确定度进行评定。不确定度的来源主要包括Na离子标准工作液的配制过程、血清样品的定容消化制备、标准曲线拟合、钠离子各分量不确定度的合成等引入的不确定度计算出各分量的不确定度,通过合成得到测量结果的合成不确定度、扩展不确定度及测试结果的报告形式。  相似文献   

13.
It was shown that the strength characteristics of the samples produced from thermoplastics (low density polyethylene, polyamide 6, Armamid, and polyethylene terephthalate) increase as a result of short vibration treating with a frequency close to that of natural vibrations of the structural elements.  相似文献   

14.
Klaos E  Odinets V 《Talanta》1990,37(5):519-526
The direct atomic-absorption determination of chromium in argillites, without preliminary concentration and separation, has been studied. A map of selective flame zones for determining Cr in argillites has been designed. An express method for determining Cr in Estonian argillites has been suggested.  相似文献   

15.
16.
The toxicity of inorganic trivalent arsenic for living organisms is reduced by in vivo methylation of the element. In man, this biotransformation leads to the synthesis of monomethylarsonic (MMA) and dimethylarsinic (DMA) acids, which are efficiently eliminated in urine along with the unchanged form (Asi). In order to document the methylation process in humans, the kinetics of Asi, MMA and DMA elimination were studied in volunteers given a single dose of one of these three arsenicals or repeated doses of Asi. The arsenic methylation efficiency was also assessed in subjects acutely intoxicated with arsenic trioxide (As2O3) and in patients with liver diseases. Several observations in humans can be explained by the properties of the enzymic systems involved in the methylation process which we have characterized in vitro and in vivo in rats as follows: (1) production of Asi metabolites is catalyzed by an enzymic system whose activity is highest in liver cytosol; (2) different enzymic activities, using the same methyl group donor (S-adenosylmethionine), lead to the production of mono- and di-methylated derivatives which are excreted in urine as MMA and DMA; (3) dimethylating activity is highly sensitive to inhibition by excess of inorganic arsenic; (4) reduced glutathione concentration in liver moderates the arsenic methylation process through several mechanisms, e.g. stimulation of the first methylation reaction leading to MMA, facilitation of Asi uptake by hepatocytes, stimulation of the biliary excretion of the element, reduction of pentavalent forms before methylation, and protection of a reducing environment in the cells necessary to maintain the activity of the enzymic systems.  相似文献   

17.
超临界流体萃取技术在提取中药挥发油中的应用   总被引:5,自引:0,他引:5  
用超监介CO2流体萃取技术对多种中药挥发油的提取进行了综述,并将其与传统的水蒸馏法进行比较。结果表明,用超临界流体法不仅挥发油的收率高,而且提取时间也大大缩短。  相似文献   

18.
A proficiency testing round was undertaken to assess the performance of laboratories to measure acrylamide in a sample of crispbread. Retail samples of crispbread were ground to a fine powder and after thorough mixing were packed in 40 g units for distribution. Ten samples were selected at random and analyzed in duplicate for acrylamide by liquid chromatography/mass spectrometry (LC/MS). Standard statistical tests showed that the material was homogeneous for the purposes of proficiency testing. Test samples were distributed to 55 laboratories in 16 countries in Europe, North America, Australia, and the Middle East. The results were analyzed by standard proficiency testing statistical procedures, and laboratories were awarded z-scores on the basis of their reported results. Based on a target standard deviation (sigmap value) taken from the Horwitz equation, for a robust mean value of 1.2 mg/kg acrylamide, satisfactory results (z-score within +/- 2 for those between 0.8 and 1.6 mg/kg) were obtained by 86% of the 37 laboratories that returned results. Only 1 laboratory was unsatisfactory and 4 had questionable results. About equal numbers of laboratories used gas chromatography (GC)/MS and LC/MS procedures with about 25% using MS/MS and one using GC with electron capture detection. There was no evident trend in performance or bias in results. GC/MS and LC/MS data were evenly distributed across the population of laboratories reporting results.  相似文献   

19.
20.
茶叶中新型污染物高氯酸盐在近年来受到越来越多的关注,相应的检测技术也在不断加强.参考国内外文献,综述了茶叶中高氯酸盐的检测方法.目前,茶叶中高氯酸盐的检测方法主要有离子色谱法(IC)、离子色谱-质谱法(IC-MS)和高效液相色谱-串联质谱法(LC-MS-MS).比较了不同检测方法的局限性和优越性,重点比较了高效液相色谱-串联质谱法不同前处理方法、净化小柱和检测条件的优劣,对茶叶高氯酸盐检测技术的发展和研究进行了展望,为检测茶叶中高氯酸盐的新材料研发和检测新标准的建立提供理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号