首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
石墨炔特殊的电子结构和孔洞结构使其在信息技术、电子、能源、催化以及光电等领域具有潜在、重要的应用前景。近几年石墨炔的基础和应用研究已取得了重要成果,并迅速成为了碳材料研究中的新领域。石墨炔中炔键单元的高活性为其化学修饰与掺杂提供了良好的平台。在这篇综述中,我们将重点介绍石墨炔的非金属杂原子掺杂、金属原子修饰以及表面改性,并深入探讨掺杂与衍生化对石墨炔材料的电子性质的影响及其对光电化学催化性能的协同增强。  相似文献   

2.
近年来, 原子催化剂(ACs)引起了广泛的研究关注. 目前该领域的长足发展受限于贵金属的使用和单原子催化剂(SACs)的性能有限. 本文总结了利用密度泛函理论(DFT)和机器学习(ML)方法筛选高效的基于石墨炔(GDY)的原子催化剂的工作. 研究表明, Pd, Co, Pt和Hg可以形成稳定的零价过渡金属-石墨炔组合(TM-GDY), 而镧系-过渡金属的双原子催化剂(Ln-TM DAC)组合通过f-d轨道耦合作用可以获得有效的催化性能提升. 进一步分析表明, 主族元素与过渡金属和镧系金属的结合可以通过p轨道耦合保持高电活性, 从而构成高度稳定的GDY-DAC系统, 机器学习算法也揭示了s,p轨道的作用. 此外, 理论算法技术在筛选催化水分解析氢反应(HER)的高效组合上也表现出了优越性, 创新性地预测了石墨炔-原子催化剂在实际催化反应中的潜能. 本综合评述可为未来设计新型原子催化剂提供新的思路与策略.  相似文献   

3.
碳材料具有价格低廉、 易制备、 环境友好、 导电性高、 比表面积大以及适合离子存储和迁移等优点, 已成为目前应用于电化学储能器件电极的重要材料之一. 石墨炔(GDY)是一种新型的二维碳同素异形体, 由sp2碳杂化形式的苯环和sp碳杂化形式的炔键构成. 这种独特的化学结构一方面保持了碳材料良好的导电特性, 另一方面形成了新颖的离子传输通道, 为碳材料带来了不同的离子传输和存储特性. 与此同时, 由于石墨炔的空间结构可调性, 可以通过引入异原子微调石墨炔电子结构, 拓展石墨炔在电极材料领域的应用. 本文重点对近几年异原子杂化石墨炔基电极材料在锂离子电池、 钠离子电池、 金属硫电池、 电容器、 金属空气电池和电极保护等储能领域的研究工作进行总结, 并对未来石墨炔类材料在储能领域的发展进行了展望.  相似文献   

4.
应用溶剂化金属原子浸渍(SMAI)法和普通浸渍(CI)法制备了金属含量相同的γAl2O3负载NiAg双金属催化剂。研究了这些催化剂在甲苯和二丙酮醇加氢以及CO2甲醇化反应中的催化性质,结果表明与组成相同的普通浸渍法催化剂相比,在所有这些反应中SMAI催化剂都显示出较高的催化活性,这是因为SMAI催化剂具有较高的分散度和还原度(零价金属百分比)。  相似文献   

5.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

6.
用溶剂化金属原子浸渍技术制备了高分散树脂固载Co -Ag双金属催化剂。研究了这些催化剂在二丙酮醇加氢和用作燃料电池电极时的催化性质。与普通浸渍法制备的相同组成的催化剂相比 ,溶剂化金属原子浸渍催化剂显示出更高的活性。这是因为溶剂化金属原子浸渍催化剂具有更高的分散性和金属的还原度 (零价金属百分比 )。研究结果还表明随着金属含量的增加催化活性增大 ,在电催化反应中钴的加入增大了银的催化活性。  相似文献   

7.
应用溶剂化金属原子浸渍(SMAI)法和普通浸渍(CI)法制备了金属含量相同的γ-Al2O3负载Ni-Ag双金属催化剂。研究了这些催化剂在甲苯和二丙酮醇加氢以及CO2甲醇化反应中的催化性质,结果表明与组成相同的普通浸渍法催化剂相比,在所有这些反应中SMAI催化剂都显示出较高的催化活性,这是因为SMAI催化剂具有较高的分散度和还原度(零价金属百分比)。  相似文献   

8.
用溶剂化金属原子浸渍技术制备了高分散树脂固载Co-Ag双金属催化剂。研究了这些催化剂在二丙酮醇加氢和用作燃料电池电极时的催化性质。与普通浸渍法制备的相同组成的催化剂相比,溶剂化金属原子浸渍催化剂显示出更高的活性。这是因为溶剂化金属原子浸渍催化剂均具有更高的分散性和金属的还原性(零价金属百分比)。研究结果还表明随着金属含量的增加催化活性增大,在电催化反应中钴的加入增大了银的催化活性。  相似文献   

9.
80%以上的工业生产过程涉及催化,如化工生产、能源转换、制药和废物处理等等.催化剂的使用显著提高了生产效率,降低了生产成本,为国民经济、地球环境和人类文明的可持续发展做出了很大贡献.为了满足日益增长的生产需求和最大的经济效益,开发高效、稳定、低成本的新型催化剂已成为当务之急.金属中心负载在载体上的负载型金属催化剂因其较好的催化活性和相对较低的金属用量而受到广泛关注.研究发现,负载型结构可增强传热和传质并增加活性金属中心的分散度,从而影响催化性能.此外,负载金属的颗粒尺寸对催化剂的性能有很大影响.迄今为止,科学家们一直在通过减小金属颗粒尺寸和提高原子利用效率来提高催化剂的活性.原子级尺寸的颗粒通常表现出与大尺寸颗粒显着不同的物理和化学性质,而当活性位点的尺寸缩小到单个原子时,单原子催化剂的概念应运而生.对于单原子催化剂,金属原子中心通过配位被载体中的缺陷锚定,从而调整金属原子的电子云分布.这种配位调整使得单原子催化剂拥有与传统催化剂不同的性能.作为催化领域的新前沿,单原子催化剂已经在许多催化反应中表现出前所未有的活性和选择性.然而,许多报道的单原子催化剂在高温环境或长期催化应用中容易受到奥斯特瓦尔德熟化过程的影响,从而导致催化剂烧结和失活.而烧结的原因在于金属原子和载体之间较弱的相互作用.失活催化剂的再生和回收将大大增加工业生产的时间和经济成本.因此,开发具有优异热稳定性的单原子催化剂以满足工业需求是十分必要的.本综述首先总结了近年来关于热稳定型单原子催化剂合成方法的基础研究,并从原子尺度上分析了这些方法所构建的金属中心的结构形态和配位环境.此外,结合近些年的研究中新的表征技术与理论计算手段解释了热稳定性的来源.重点讨论了热稳定单原子催化剂的实际催化应用.分析了热稳定单原子催化剂在热催化应用中的独特作用机理、并尝试为确定催化过程中真正的活性中心以及通过原子级调控手段进行高活性热稳定单原子催化剂的合成提供理论指导.最后总结了热稳定单原子催化剂发展的主要问题,并简要分析了单原子催化领域的研究挑战和发展前景.  相似文献   

10.
氧还原反应是燃料电池中至关重要的一环。常规的氧还原反应催化剂是贵金属铂,但鉴于铂的高成本,研究者希望寻找一种低成本的替代催化剂,它更便宜并且具有相当于铂的催化效果。在前期研究中,已经对铁氮共掺杂石墨炔和钴氮共掺杂石墨炔进行了研究,它们均表现出了高效的氧还原反应活性,而与之具有相似电子结构的金属镍尚未研究。因此,此工作以氢取代石墨炔为基底,设计并合成了多种镍氮掺杂的石墨炔电催化剂,并进行了氧还原电化学测试,其中,镍质量分数2%并加入三聚氰胺进行烧制的镍氮掺杂石墨炔催化剂表现出最佳的氧还原电催化性能。对催化剂进行了一系列的物理表征:X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和扫描电子显微镜(SEM),进一步分析了其结构和形貌。从物理表征及电化学测试结果可以看出,氮原子是构建催化活性位点的关键,而镍原子在提高催化剂性能方面起着至关重要的作用,氮和镍的协同作用使得镍氮掺杂石墨炔催化剂表现出优异的催化性能,这使其具有良好的应用前景。  相似文献   

11.
Atomic catalysts(Acs)consisting of zero-valent metal atoms anchored on supporting materials have shown promising potentials in catalysis and energy conversion due to their higher atomic utilization,higher selectivity,activity and durability toward target reactions.However,traditional single-atom catalysts are mainly composed of clusters of metal atoms,which cannot effectively solve the problems of easy migration and aggregation of metal atoms.Besides,the traditional synthesis methods still lack breakthroughs in improving the stability and accurately controlling the chemical structure and charge distribution of metal atoms,which seriously limits the understanding of structure-activity relationship and catalytic mechanism in the catalytic reaction process at the atomic level.Graphdiyne(GDY)based Acs are stabilized by incomplete charge transfer between metal atoms and supporting materials,resolving the easy migration and aggregation of traditional single atomic catalysts,which have been regarded as the next generation of catalysts.This review will start with the overview of the synthesis methods for precisely anchoring of different zero-valent transition metal atoms(e.g.,Ni,Fe,Mo and Cu)and noble metal atoms(e.g.,Pd and Ru),followed by focusing on the recent advances in the researches of the Acs toward a series of important reactions for energy conversion technologies,including the electrochemical water splitting(EWS),nitrogen reduction reaction(NRR),oxygen reduction reaction(ORR)and others.Finally,the review concludes with a perspective highlighting the promises and challenges in the further development of Acs.  相似文献   

12.
As a special carbon material, graphdiyne (GDY) features the superiorities of incomplete charge transfer effect on the atomic level, tunable electronic structure and anchoring metal atoms directly with organometallic coordination bonds M (metal)-C (alkynyl carbon in GDY), providing it an ideal platform to construct single-atom catalysts (ACs). The coordination environment of single atoms anchored on GDY plays a key role in their catalytic performance. The mini-review highlights state-of-the-art progress in the rational design of GDY-based ACs and their applications, and mainly reveals the relationship between the coordination engineering of the GDY-based ACs and corresponding catalytic performance. Finally, some prospects concerning the future development of GDY-based ACs in energy conversion are also discussed.  相似文献   

13.
Carbon dioxide(CO2) is an important and valuable C1 resource for the synthesis of numerous of value-added products. However, efficient fixation and conversion of CO2 into organic carbonates under mild conditions remain great challenges. Herein, graphdiyne(GDY)-based nickel atomic catalysts(Ni0/GDYs) were synthesized through a facile in-situ reduction method. Experimental results showed that the obtained Ni0/GDY had outstanding catalytic performances for converting CO2 into cyclic carbonates with a high reaction conversion(99%) and reaction selectivity(ca. 100%) at 80℃ and under 1 atm(1 atm=101325 Pa). Specially, the activation energy (Ea) value for the Ni0/GDY is 37.05 kJ/mol, lower than those of reported catalysts. The reaction mechanism was next carefully analyzed by using density functional theory(DFT) calculations. Such an excellent catalytic property could be mainly attributed to the high dispersion of active sites on the Ni0/GDY, and the unique incomplete charge transfer properties of GDY-based zero-valent metallic catalysts.  相似文献   

14.
Two-dimensional (2D) graphdiyne (GDY), a rapidly rising star on the horizon of carbon materials, is a new carbon allotrope featuring sp- and sp2-cohybridized carbon atoms and 2D one-atom-thick network. Since the first successful synthesis of GDY by Professor Li's group in 2010, GDY has attached great interests from both scientific and industrial viewpoints based on its unique structure and physicochemical properties, which provides a fertile ground for applications in various fields including electrocatalysis, energy conversion, energy storage and optoelectronic devices. In this work, various potential properties of the GDY-based electrocatalysts and their recent advances in energy conversion are reviewed, including atomic catalysts, heterogeneous catalysts, and metal-free catalysts. The critical role of GDY in improving catalytic activity and stability is analyzed. The perspectives of the challenges and opportunities faced by GDY-based materials for energy conversion are also outlined.  相似文献   

15.
单原子催化剂(SACs)具有100%的原子利用率及充分暴露的原子金属活性位点, 其催化活性和选择性更具优势, 已广泛应用在化学、 能源及环境等领域. 近年来, SACs在生物医学领域也引起了广泛关注. 本文综述了SACs在肿瘤治疗、 抗菌、 抗氧化和生物传感等生物医学领域的应用及研究进展, 并简要总结了SACs未来应用的挑战和机遇, 为合理设计多性能的SACs提供了可行策略.  相似文献   

16.
Graphdiyne, as a magical support, can anchor zero valence metal atoms, providing us with an opportunity to develop emerging catalysts with the maximized active sites and selectivity. Herein we report high-performance atom catalysts (ACs), Cu0/GDY, by anchoring Cu atoms on graphdiyne (GDY) for hydrogen evolution reaction (HER). The activity and selectivity of this catalyst are obviously superior to that of commercial 20 wt.% Pt/C, and the turnover frequency of 30.52 s−1 is 18 times larger than 20 wt.% Pt/C. Density functional theory (DFT) calculations demonstrate that the strong p-d coupling induced charge compensation leads to the zero valence state of the atomic-scaled transition metal catalyst. Our results show the strong advantages of graphdiyne-anchored metal atom catalysts in the field of electrochemical catalysis and opens up a new direction in the field of electrocatalysis.  相似文献   

17.
为了进一步实现质子交换膜燃料电池(PEMFC)能量转化技术的大规模开发和应用, 提高催化剂的成本效益是先决条件. 目前, 与铂族等贵金属基催化剂相比, 原子分散的金属-氮-碳(M-N-C)催化剂也在提高活性位点密度、 原子利用率和催化活性等方面表现出巨大的潜力, 是最有望代替铂基催化剂的首选材料. 在原子分散M-N-C催化剂的制备过程中, 获得活性位点均匀分散且结构体系最优化是挑战性问题. 基于此, 我们重点研究了各种有利于原子分散的M-N-C催化剂的制备方法, 以及不同催化剂中原子的化学环境调控对催化位点的影响. 本文从M-N-C催化剂的合成与表征、 反应机理、 密度泛函理论计算等方面进行了深入的探讨, 着重讨论了双金属位点、 原子簇结构和杂原子对催化位点的化学环境调控. 最后, 提出了原子分散M-N-C催化剂大规模应用存在的问题及进一步优化的发展方向.  相似文献   

18.
选取化学惰性的β-SiC为载体, 通过共浸渍法制备了Co-Pt/SiC催化剂; 利用球差校正的电子显微镜(AC-STEM), 结合氢气程序升温还原(H2-TPR)、 CO化学吸附以及准原位X射线吸收光谱(XAS)等手段, 研究了Co-Pt/SiC催化剂中贵金属Pt对于钴基费托反应的促进作用. 结果表明, Pt助剂从提高分散度和还原度两个方面增加了Co0活性相的数量, 从而提升了催化剂的费托反应活性. 通过AC-STEM表征了Pt在催化剂上的微观结构状态, 发现Pt助剂主要以单原子或团簇的形式分散在金属Co上. 这种分散形式的Pt对钴基催化剂的促进作用可能遵循氢气解离和氢溢流机理: 分布在Co上的Pt显著提高了催化剂解离氢气的能力, 这有利于促进钴物种的还原, 提高还原度, 同时也有利于促进费托反应过程中H2的活化以及CO的氢助解离, 提高了催化剂的反应活性, 以及饱和烷烃的选择性.  相似文献   

19.
The synergistic effect can help improve the electrocatalyst performances by combining the advantages of individual components. In particular, such an effect has been more important in the atomic catalysts. In this review, we have summarized the synergistic effect of N, X co-doping graphdiyne[X=B, S, F or transition metal(TM)] electrocatalysts and graphdiyne-based dual-atom catalyst(GDY-DAC). In general, the synergistic cooperation between two different dopants in co-doped GDY and adjacent active sites in GDY-DAC not only promotes their catalytic activity but also greatly enhances the thermodynamic stability of the catalysts. For the N, X co-doping GDY electrocatalysts, doping the heteroatoms like boron, sulphur, phosphorus, and fluorine with nitrogen can further tune the charge density distribution and electronic structure. Meanwhile, the electron exchange between two doping atoms and GDY substrate has been discussed, where the TM-based GDY-DAC is a very promising catalyst for electrocatalysis. More importantly, electronic interactions between different elements on GDY have been carefully discussed. In the end, we have also supplied perspectives to the future developments of the GDY-based electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号