首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  国内免费   4篇
化学   4篇
物理学   1篇
  2022年   1篇
  2020年   1篇
  2018年   2篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
激光烧蚀制备分布反馈式有机激光器件   总被引:4,自引:4,他引:0       下载免费PDF全文
田桢熔  刘岳峰  金玉  白昱  冯晶 《发光学报》2012,33(2):197-200
采用激光烧蚀的方法结合激光全息技术,直接在高分子聚合物MEH-PPV薄膜表面烧蚀光栅结构,制备了分布反馈式有机激光器。这一方法具有工艺简单、光栅参数的可控性和重复性好等优点。器件MEH-PPV的膜厚是400 nm。利用波长为355 nm的Nd-YAG纳秒激光器进行单脉冲烧蚀,获得的光栅周期和光栅高度分别为370 nm和 100 nm。利用飞秒激光放大器作为泵浦源激射DFB激光器件,得到激射阈值约为182 μJ·cm-2·pulse-1,光谱的波峰约在609 nm处,半高宽为4.2 nm。通过改变两光束的夹角获得了周期为360, 370, 380, 390 nm的光栅,它们对应的激光波峰分别为602.91, 609.24, 613.26, 619.01 nm。  相似文献   
2.
由于化石能源的大量开采和利用造成CO2过度排放,从而导致严重的温室效应和气候环境问题,给人类生存带来极大威胁.CO2选择加氢反应可以将CO2催化加氢生成高附加值的CO产物.与其他的CO2转化反应策略相比,该过程中H2的消耗更少,成为可有效处理及转化CO2的手段之一.同时,应尽可能抑制CO2深度加氢以及甲烷的产生,研制及设计具有高CO选择性的新型高效催化剂及其构效关系的分析仍十分重要.据报道,负载型贵金属基催化剂的使用有利于H2分子的活化,具有优异的催化活性,因而广泛应用于多种催化反应中.然而,贵金属催化剂实现工业应用的最大挑战是资源的限制及其高额的成本.近年来,由贵金属制备的负载型亚纳米团簇受到广泛关注,主要包括如Au,Pt,Pd,Ru等贵金属,可有效应用于多相催化反应.人们还致力于提高负载型亚纳米团簇的分散度,促进催化剂活性位点的有效暴露,有利于大幅度提高催化剂的有效利用率.本文采用共沉淀法成功制备了超高分散的负载型Ru基催化剂,通过CO2选择加氢-程序升温表面反应(TPSR)和质谱联用技术测试了催化剂性能,发现CO2加氢反应生成CO选择性达100%.采用XRD,BET和TEM等方法对催化剂结构进行表征,并结合H2-TPR,H2-TPD和XPS等表征结果深入探讨了催化剂构效关系,并提出了针对该催化剂体系较为合理的反应模型.在CO2选择加氢反应的催化性能测试中,2.50%Ru/FeOx催化剂对目标产物CO选择性仅为41%; 随着Ru负载量降低至0.25%和0.1%时,CO选择性明显提高至80%; 当进一步降低Ru含量至0.01%时,CO选择性接近100%,且表现出优异的反应速率.在360 oC时,0.01%Ru/FeOx催化剂的相对反应速率为7.71 molCO2molRu-1 min-1,是2.50%Ru/FeOx催化剂相对反应速率的154倍.H2-TPR结果表明,贵金属Ru可以明显促进载体FeOx的还原,并产生丰富的氧空位,进而促进CO2的吸附、活化.而且CO2选择加氢TPSR结果显示,目标产物CO的起始生成温度总是滞后于原料H2的初始活化温度,与H2-TPR结果及文献报道的CO2选择加氢反应机理一致.通过H2-TPD深入理解H2在催化剂表面的活化和氢溢流现象,以及Hads与不同催化剂之间的相互作用力,0.01%Ru/FeOx催化剂相对较高的H2脱附峰温度表明,该样品中Ru与Hads具有极强的相互作用力,相对抑制了Hads与COads深入加氢生成CH4,从而提高了CO选择性,而2.50%Ru/FeOx催化剂的情况则与此相反.本文提出了从Hads吸附作用力强弱来考虑CO2选择加氢反应选择性的新思路,同时为设计CO2选择加氢制高附加值CO的高催化反应速率、高CO选择性的高分散Ru基催化剂提供了一种经济简易的催化剂设计思路.  相似文献   
3.
采用水热法结合热处理制备了具有高结晶性的V2O5,利用X射线衍射仪、球差校正扫描透射电子显微镜和扫描电子显微镜对V2O5的物相和形貌进行了表征,发现制备的V2O5择优取向生长并且具有良好的结晶性.电化学测试结果表明,以V2O5为正极材料的电池在电流密度为0.5 A/g下首次放电比容量约为340 mA·h/g.在电流密度为5 A/g下电池的首次放电比容量为170 mA·h/g,并且循环100次后衰减为50 mA·h/g.对不同放电态的V2O5正极材料的物相进行了分析,得出了V2O5正极材料在充放电过程中发生了锌离子和质子共嵌入(脱出)的反应机理;V2O5正极材料在充放电过程中发生的非晶化和副产物碱式硫酸锌的生成是导致以V2O5作为水系锌离子电池正极材料的电池系统发生容量衰减的主要原因.  相似文献   
4.
由于化石能源的大量开采和利用造成CO_2过度排放,从而导致严重的温室效应和气候环境问题,给人类生存带来极大威胁.CO_2选择加氢反应可以将CO_2催化加氢生成高附加值的CO产物.与其他的CO_2转化反应策略相比,该过程中H2的消耗更少,成为可有效处理及转化CO_2的手段之一.同时,应尽可能抑制CO_2深度加氢以及甲烷的产生,研制及设计具有高CO选择性的新型高效催化剂及其构效关系的分析仍十分重要.据报道,负载型贵金属基催化剂的使用有利于H2分子的活化,具有优异的催化活性,因而广泛应用于多种催化反应中.然而,贵金属催化剂实现工业应用的最大挑战是资源的限制及其高额的成本.近年来,由贵金属制备的负载型亚纳米团簇受到广泛关注,主要包括如Au,Pt,Pd,Ru等贵金属,可有效应用于多相催化反应.人们还致力于提高负载型亚纳米团簇的分散度,促进催化剂活性位点的有效暴露,有利于大幅度提高催化剂的有效利用率.本文采用共沉淀法成功制备了超高分散的负载型Ru基催化剂,通过CO_2选择加氢-程序升温表面反应(TPSR)和质谱联用技术测试了催化剂性能,发现CO_2加氢反应生成CO选择性达100%.采用XRD,BET和TEM等方法对催化剂结构进行表征,并结合H2-TPR,H2-TPD和XPS等表征结果深入探讨了催化剂构效关系,并提出了针对该催化剂体系较为合理的反应模型.在CO_2选择加氢反应的催化性能测试中,2.50%Ru/FeO_x催化剂对目标产物CO选择性仅为41%;随着Ru负载量降低至0.25%和0.1%时,CO选择性明显提高至80%;当进一步降低Ru含量至0.01%时,CO选择性接近100%,且表现出优异的反应速率-.在360 oC时,0.01%Ru/FeO_x催化剂的相对反应速率为7.71 mol_(CO_2) mol_(Ru)~(-1) min~(-1),是2.50%Ru/FeO_x催化剂相对反应速率的154倍.H_2-TPR结果表明,贵金属Ru可以明显促进载体FeO_x的还原,并产生丰富的氧空位,进而促进CO_2的吸附、活化.而且CO_2选择加氢TPSR结果显示,目标产物CO的起始生成温度总是滞后于原料H2的初始活化温度,与H_2-TPR结果及文献报道的CO_2选择加氢反应机理一致.通过H_2-TPD深入理解H2在催化剂表面的活化和氢溢流现象,以及Hads与不同催化剂之间的相互作用力,0.01%Ru/FeO_x催化剂相对较高的H2脱附峰温度表明,该样品中Ru与Hads具有极强的相互作用力,相对抑制了Hads与COads深入加氢生成CH_4,从而提高了CO选择性,而2.50%Ru/FeO_x催化剂的情况则与此相反.本文提出了从Hads吸附作用力强弱来考虑CO_2选择加氢反应选择性的新思路,同时为设计CO_2选择加氢制高附加值CO的高催化反应速率、高CO选择性的高分散Ru基催化剂提供了一种经济简易的催化剂设计思路.  相似文献   
5.
选取化学惰性的β-SiC为载体, 通过共浸渍法制备了Co-Pt/SiC催化剂; 利用球差校正的电子显微镜(AC-STEM), 结合氢气程序升温还原(H2-TPR)、 CO化学吸附以及准原位X射线吸收光谱(XAS)等手段, 研究了Co-Pt/SiC催化剂中贵金属Pt对于钴基费托反应的促进作用. 结果表明, Pt助剂从提高分散度和还原度两个方面增加了Co0活性相的数量, 从而提升了催化剂的费托反应活性. 通过AC-STEM表征了Pt在催化剂上的微观结构状态, 发现Pt助剂主要以单原子或团簇的形式分散在金属Co上. 这种分散形式的Pt对钴基催化剂的促进作用可能遵循氢气解离和氢溢流机理: 分布在Co上的Pt显著提高了催化剂解离氢气的能力, 这有利于促进钴物种的还原, 提高还原度, 同时也有利于促进费托反应过程中H2的活化以及CO的氢助解离, 提高了催化剂的反应活性, 以及饱和烷烃的选择性.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号