首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   35篇
化学   37篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2002年   2篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
以外消旋的2-甲基-1,5-戊二胺(MPMD)为结构导向剂,在水热条件下合成出新磷酸铝化合物[Al4P5O19(OH)][C6H18N2](AlPO-MPMD)和新磷酸镓化合物[Ga8P8O32F5.5][C6H18N2]2[H30+]1.5(GaPO-MPMD).采用单晶x射线衍射结构分析、粉末x射线衍射分析(XRD)、热重-差热分析(TGA-DTA.A)、固体核磁共振(MAs NMR)、旋光分析(Optical rotation)以及振动圆二色光谱分析(Vibrational circular dichroism,VCD)等技术对产物进行了表征.对产物的VCD实验光谱和理论模拟光谱对比分析及旋光分析表明,在水热合成过程中,具有S构象的手性结构导向剂分子比具有R构象的手性结构导向剂分子更多地进入无机化合物骨架中,显示了手性对映体分子在该水热条件下的原位手性拆分.  相似文献   
2.
以四乙基氢氧化铵(TEAOH)为结构导向剂,在超浓水热条件下合成了手性多形体A(简称A形体)过量的β沸石,对初始凝胶的性质及晶化过程进行了深入研究,测定了相应的晶化曲线.研究结果表明,与晶化出A形体含量低于50%的普通β沸石的合成体系相比,晶化出A形体过量的β沸石的合成体系中含水量极低,凝胶中过量的水必须在晶化之前通过加热去除,但过度去除初始凝胶中的水则会显著延长晶化时间.在晶化初期,产物中己出现A形体过量特征,随着晶化的进行,A形体的过量程度无显著变化.  相似文献   
3.
以二丙胺异构体(二正丙胺DPA和二异丙胺D-iPA)为结构导向剂,在200℃加热2组反应原料物质的量之比不同的初始凝胶,合成出了高结晶度的磷酸铝分子筛AlPO4-11。利用X射线粉末衍射分析、元素分析等表征手段,研究了凝胶的晶化过程和液相的pH值以及Al和P的浓度演化。初始凝胶各组分物质的量之比为nAl2O3nP2O5nDPA/D-iPAnH2O2=1.0:1.0:1.2:75时,以DPA为结构导向剂,晶化过程中无中间相生成,而以D-iPA为结构导向剂时,晶化过程中生成了具有12元环孔道结构的磷酸铝分子筛AlPO4-5中间相;初始凝胶各组分物质的量之比为nAl2O3nP2O5nDPA/D-iPAnH2O2=1.0:1.0:1.0:75时,以DPA为结构导向剂,晶化过程中生成了具有18元环孔道结构的磷酸铝分子筛VPI-5中间相,而以D-iPA为结构导向剂时,晶化过程中同时出现了VPI-5及AlPO4-5两种中间相。表明对于同一种有机胺,凝胶物质的量之比的改变影响了其结构导向效应。理论计算结果显示质子化的DPA及D-iPA中N原子上的电荷有差异,表明有机胺的结构微调影响其结构导向效应,但该影响依赖于凝胶组成。  相似文献   
4.
以乙二胺为结构导向剂,在200℃加热物质的量组成为nAl2O3:nP2O5:nen:nH2O=1:1:2:226的初始混合物(en=乙二胺),合成了三维开放骨架磷酸铝化合物AlPO4-12。用X-射线衍射、元素分析、pH测量、液体核磁共振以及电喷雾质谱研究了其晶化过程。依据质谱数据,开发了一个系统枚举在晶化过程中可能生成的小结构单元分子式的方法。研究发现在AlPO4-12的晶化过程中经历了层状磷酸铝UiO-15和UiO-13中间相,液相中Al物种的浓度极低,在晶化过程中生成的小结构单元中P-OH逐渐增多,乙二胺分子逐渐质子化,在晶化过程中生成了磷酸铝的4元环和6元环。用电喷雾质谱研究晶化过程中的液相可以获得小结构单元的结构和组成信息。  相似文献   
5.
以乙二胺(EDA)和1,3-丙二胺(1,3-DAP)为结构导向剂,在180 ℃加热摩尔比n(Al2O3):n(P2O5):n(R):n(H2O)=1:1:1:277(R=EDA,1,3-DAP)的混合物,分别得到了高结晶度的三维阴离子开放骨架磷酸铝AlPO4-12和UiO-26。 利用X射线粉末衍射分析、元素分析和液相酸碱度测量等表征手段,研究了两个合成体系的晶化过程以及晶化过程中液相的Al、P浓度和pH值随时间的演化。 用Materials Studio中的“原子体积和表面”模块和Dmol3模块计算了双质子化乙二胺和1,3-丙二胺的体积以及Hirshfeld电荷。 结果表明,双质子化EDA和1,3-DAP中N原子上的Hirshfeld电荷分别为0.073 e和0.064 e,按Hirshfeld电荷计算的电荷密度分别为1.8573和1.3400 e/nm3,按形式电荷计算的电荷密度分别为25.44和20.94 e/nm3,而AlPO4-12和UiO-26的骨架电荷密度分别为-6.1和-4.6 e/nm3。 结果表明,与氨基中N原子相连碳链长度的改变会影响其上的电荷量以及电荷密度,从而改变原有机胺的结构导向效应,导致晶化产物从AlPO4-12变成了具有较小电荷密度的UiO-26。  相似文献   
6.
将快速 Monte Carlo方法与分子动力学方法相结合 ,研究了不同种类有机分子在 Al3P4 O3- 1 6 计量比的二维层状磷酸铝形成中的模板能力 .依据主 -客体之间非键相互作用能 (包括范德华能、氢键能和库仑能 ) ,可合理地解释已知实验现象 ,并能有效地预测出适于形成某一特定无机层结构的有机胺模板剂 .通过选择理论预测的有机胺分子作为模板剂 ,成功地合成了二维层状磷酸铝化合物 Al3P4 O1 6 · 1 .5 H3NC6 H1 0 NH3.  相似文献   
7.
开发了一种在不锈钢网基底上快速制备连续致密Silicalite-1(Si-MFI)分子筛膜的新方法. 该制膜过程包括用含有聚氧乙烯(PEO)高分子的氧化硅溶液对不锈钢网基底进行预处理和在预处理后的基底上用二次生长法制备分子筛膜2个步骤. 通过该方法可在12 h内制备连续致密的不锈钢网支撑的Si-MFI分子筛膜. SEM分析结果表明, 所制备的Si-MFI分子筛膜连续且致密, 而XRD分析结果表明, 膜中的Si-MFI微晶具有高结晶度. 用膜渗透分离装置及气相色谱仪测试了Si-MFI膜的渗透性能及对CO2和N2的分离性能, 结果显示, 该Si-MFI膜具有很好的渗透性能, 并对CO2和N2具有很好的分离性能.  相似文献   
8.
系统研究了以KOH为结构导向剂,Y型沸石(HY和NaY)在水热条件下转晶为MER型沸石的行为.MER型沸石是硅铝比(Si/Al)在2~3之间且具有四种尺寸8元环孔道(3.1Å×3.5Å,2.7Å×3.6Å,3.4Å×5.1Å,3.3Å×3.3Å)的硅铝沸石分子筛,在小分子催化以及分离方面具有重要的潜在应用.传统水热法合成高结晶度MER型沸石需要7~10 d,将Y型沸石置于KOH的溶液中,经水热处理可在2 d内生成高结晶度的MER型沸石,而水热处理具有等价摩尔组成的无定形硅铝凝胶则得不到高结晶度MER型沸石的纯相.HY沸石可在100和150℃发生转晶,而NaY则只能在150℃发生转晶.KOH/SiO2比和H2O/SiO2比对Y型沸石的转晶行为有重大的影响,只有在最优KOH/SiO2比和H2O/SiO2比条件下才能生成高结晶度的MER型沸石.该转晶合成法显著缩短了MER型沸石的合成周期,对缩短其它有重大工业应用价值的沸石分子筛的合成周期有重要的借鉴意义.  相似文献   
9.
以不同有机物(邻苯二酚、间苯二酚、对苯二酚、乙二醇、环己胺)为辅助炭源,通过直接炭化含柠檬酸及磷酸铝的复合物制备了一系列纳米孔炭材料(NC),采用多种表征手段研究了辅助炭源对最终炭材料性质的影响.结果表明,NC材料的结构和表面官能团性质随辅助炭源的变化而改变,其中以间苯二酚、对苯二酚、环己胺为辅助炭源制备的炭材料在空气氧化苯甲醇反应中表现有较高的催化活性.  相似文献   
10.
以1,2-丙二胺(1,2-DAP)为结构导向剂,在180℃加热摩尔组成为n(Al_2O_3)∶n(P_2O_5)∶n(1,2-DAP)∶n(H_2O)=1∶6∶5.5∶139的初始混合物,合成了具有AlPO-CJ31骨架结构的新型三维开放骨架磷酸铝化合物(1);加热摩尔组成为n(Al_2O_3)∶n(P_2O_5)∶n(1,2-DAP)∶n(H_2O)=1∶6∶7.5∶139的初始混合物,合成了二维层状磷酸铝化合物APDAP_(12)-150.利用X射线粉末衍射分析(XRD)、元素分析、热重/差热分析等表征手段确认了化合物1的分子式为[Al_4P_5O_(20)·H_3O·H_2O]·[H_3NCH_2CHNH_3CH_3],质子化的水分子与双质子化的1,2-丙二胺共同起到了导向化合物1的作用.调变初始混合物中1,2-丙二胺的比例可显著影响其模板效应.1,2-丙二胺比例较低[n(1,2-DAP)=5.5]时,产物为三维开放骨架化合物,而当其比例较高[n(1,2-DAP)=7.5]时,产物为二维层状化合物.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号