首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 940 毫秒
1.
Two-dimensional (2D) graphdiyne (GDY), a rapidly rising star on the horizon of carbon materials, is a new carbon allotrope featuring sp- and sp2-cohybridized carbon atoms and 2D one-atom-thick network. Since the first successful synthesis of GDY by Professor Li's group in 2010, GDY has attached great interests from both scientific and industrial viewpoints based on its unique structure and physicochemical properties, which provides a fertile ground for applications in various fields including electrocatalysis, energy conversion, energy storage and optoelectronic devices. In this work, various potential properties of the GDY-based electrocatalysts and their recent advances in energy conversion are reviewed, including atomic catalysts, heterogeneous catalysts, and metal-free catalysts. The critical role of GDY in improving catalytic activity and stability is analyzed. The perspectives of the challenges and opportunities faced by GDY-based materials for energy conversion are also outlined.  相似文献   

2.
原子催化剂是零价金属原子锚定于载体上的一种新型催化剂, 具有原子利用率高、 选择性高以及反应活性和稳定性高等优点, 一直是催化领域的研究前沿, 在催化和能量转换领域具有广阔的发展前景. 石墨炔与金属原子之间独特的不完全电荷转移性质实现了零价过渡金属原子的稳定锚定, 解决了传统单原子催化剂易迁移和聚集的问题, 被认为是新一代催化剂. 本综述从石墨炔原子催化剂的结构性质、 表征以及应用等方面出发, 综合评述了相关领域的最新研究成果, 介绍了石墨炔原子催化剂在电催化固氮制氨、 产氢、 全水解和CO2固定等方面的应用和发展前景, 为实现新概念高性能催化材料的设计合成提供了研究思路.  相似文献   

3.
Graphdiyne(GDY)has the unique feature in the topological ordered arranged sp-and sp2-hybridized carbon atoms,thus deriving a series of 2D allotropes.Due to inhomogeneous π-bonding and carbon orbital overlap between different hybrid carbon atoms,GDY possesses a natural band gap with a Dirac cones structure.And GDY exhibits semiconductor property with a conductivity of 2.516×10-4 S/m at room temperature.The topological distribution of alkyne and benzene bonds of GDY makes its surface charge distribution extremely uneven,which produces high intrinsic activity for further modification.Its unique molecular structure endows the specific interaction with various species,such as ions,atoms,molecules and nanoparticles,showing excellent charge transport capability and unique advantages in mass transfer and energy conversion.From the view of the interaction principle between GDY and different compositions,we summarized the application of GDY-based materials in the fields of catalysis,energy conversion and storage,biological detection and so on.  相似文献   

4.
As a new 2D carbon material allotrope composed of sp and sp2 carbon atoms, graphdiyne (GDY) possesses a highly conjugated porous structure, easily tunable intrinsic bandgap, and various excellent properties. Such properties allowed researchers to develop methods to prepare GDY, so that it can be applied for energy storage and conversion, environmental protection, various electronic devices and so on. In this review, the authors systematically discuss the methods and strategies developed for preparing GDY and its derivatives, including the synthesis of GDY by using liquid-, solid-, and gas-phase methods, the synthesis of heteroatom-doped GDY, the preparation of GDY-based composites, and the synthesis of GDY analogues. All these preparation methods can provide the way to obtain GDY for specific studies and applications.  相似文献   

5.
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.  相似文献   

6.
The synergistic effect can help improve the electrocatalyst performances by combining the advantages of individual components. In particular, such an effect has been more important in the atomic catalysts. In this review, we have summarized the synergistic effect of N, X co-doping graphdiyne[X=B, S, F or transition metal(TM)] electrocatalysts and graphdiyne-based dual-atom catalyst(GDY-DAC). In general, the synergistic cooperation between two different dopants in co-doped GDY and adjacent active sites in GDY-DAC not only promotes their catalytic activity but also greatly enhances the thermodynamic stability of the catalysts. For the N, X co-doping GDY electrocatalysts, doping the heteroatoms like boron, sulphur, phosphorus, and fluorine with nitrogen can further tune the charge density distribution and electronic structure. Meanwhile, the electron exchange between two doping atoms and GDY substrate has been discussed, where the TM-based GDY-DAC is a very promising catalyst for electrocatalysis. More importantly, electronic interactions between different elements on GDY have been carefully discussed. In the end, we have also supplied perspectives to the future developments of the GDY-based electrocatalysts.  相似文献   

7.
Graphdiyne(GDY),which is composed of sp2-/sp-hybridized carbon atoms,has attracted increasing attention.In the structure of GDY,the existence of large triangular-like pores,well dispersed electron-rich cavities as well as a large π-conjugated structure endows GDY with a natural bandgap,fast electron/ion transport,and tunable electronic properties.These unique features make GDY competitive in areas of gas separation and capture,electronics,detectors,catalysts,biomedicine and therapy,and energy-related fields.Benefiting from the facile synthesis method,various GDY structures and GDY-based composites have been successfully prepared and show great potential in the practical application of energy storage and catalysis areas.Here,this review aims at providing a timely and comprehensive update on the preparation and application of GDY materials.The current development of GDY materials in various electrochemical fields especially in energy conversion,energy storage,and catalysis is mainly summarized.Moreover,the potential development prospects are also discussed.  相似文献   

8.
Two Pt single‐atom catalysts (SACs) of Pt‐GDY1 and Pt‐GDY2 were prepared on graphdiyne (GDY)supports. The isolated Pt atoms are dispersed on GDY through the coordination interactions between Pt atoms and alkynyl C atoms in GDY, with the formation of five‐coordinated C1‐Pt‐Cl4 species in Pt‐GDY1 and four‐coordinated C2‐Pt‐Cl2 species in Pt‐GDY2. Pt‐GDY2 shows exceptionally high catalytic activity for the hydrogen evolution reaction (HER), with a mass activity up to 3.3 and 26.9 times more active than Pt‐GDY1 and the state‐of‐the‐art commercial Pt/C catalysts, respectively. Pt‐GDY2 possesses higher total unoccupied density of states of Pt 5d orbital and close to zero value of Gibbs free energy of the hydrogen adsorption (|Δ |) at the Pt active sites, which are responsible for its excellent catalytic performance. This work can help better understand the structure–catalytic activity relationship in Pt SACs.  相似文献   

9.
Graphdiyne(GDY),a novel two-dimensional(2D)carbon allotrope featuring one-atom-thick planar layers of sp andhybridized carbon network,is a rapidly rising star on the horizon of materials science.Because of its unparalleled structural,electronic,chemical and physical properties,it has been receiving unprecedented increases from fundamental studies to practical applications,particularly the field of energetic materials.In this review,we aim at providing an up-to-date comprehensive overview on the state-of-the-art research into GDY,from theoretical studies to the key achievements in the development of new GDY-based energetic materials for energy storage and conversion.By reviewing the state-of-the-art achievements,we aim to address the benefits and issues of GDY-based materials,as well as highlighting the existing key challenges and future opportunities in this exciting field.  相似文献   

10.
Herein,we report a comparative investigation of the electrochemical lithium diffusion within graphidyne(GDY)based electrodes.The transfer kinetic behaviors of lithium ions during the insertion/extraction process are analyzed through different methods including the galvanostatic intermittent titration technique(GITT)and the electrochemical impedance spectroscopy(EIS).GDY with the morphology of nanosheets(GDY NS)shows lithium diffusion coefficients in the orders range of 10-12-10-13 cm2/s through the GITT method.Meanwhile,EIS indicates quite a lower value of lithium diffusion coefficients between 10-13 and 10-15 cm2/s,which indicates that the analysis technique has an influence on the evaluation of GDY-based electrodes.In addition,under the same measurement condition of GITT,GDY nanoparticles(GDY NP)exhibit a lower value of Li+diffusion coefficient(10-14-10-16 cm2/s)during the charge-discharge process compared to those of GDY NS,which can be ascribed to the wide distributing range of particle size in GDY NP based electrodes.The analysis results in this work reveal that the aggregating forms of GDY electrode material have an important effect on the diffusion process of lithium ions,which provides a pathway to optimize the performance of GDY-based energy storage devices.  相似文献   

11.
Graphdiyne, as a magical support, can anchor zero valence metal atoms, providing us with an opportunity to develop emerging catalysts with the maximized active sites and selectivity. Herein we report high-performance atom catalysts (ACs), Cu0/GDY, by anchoring Cu atoms on graphdiyne (GDY) for hydrogen evolution reaction (HER). The activity and selectivity of this catalyst are obviously superior to that of commercial 20 wt.% Pt/C, and the turnover frequency of 30.52 s−1 is 18 times larger than 20 wt.% Pt/C. Density functional theory (DFT) calculations demonstrate that the strong p-d coupling induced charge compensation leads to the zero valence state of the atomic-scaled transition metal catalyst. Our results show the strong advantages of graphdiyne-anchored metal atom catalysts in the field of electrochemical catalysis and opens up a new direction in the field of electrocatalysis.  相似文献   

12.
Two-dimensional graphdiyne (GDY) formed by sp and sp2 hybridized carbon has been found to be an efficient toxic gas sensing material by density functional theory (DFT). However, little experimental research concerning its gas sensing capability has been reported owing to the complex preparation process and harsh experimental conditions. Herein, porous GDY nanosheets are successfully synthesized through a facile solvothermal synthesis technique by using CuO microspheres (MSs) as both template and source of catalyst. The porous GDY nanosheets exhibit a broadband optical absorption, rendering it suitable for the light-driven optoelectronic gas sensing applications. The GDY-based gas sensor was demonstrated to have excellent reversible to NO2 behaviors at 25 °C for the first time. More importantly, higher response value and faster response-recovery time once exposed to NO2 gas molecules are achieved by the illumination of UV light. In this way, our work paves the way for the exploration of GDY-based gas detection experimentally.  相似文献   

13.
Graphdiyne (GDY) with a direct band gap, excellent carrier mobility and uniform pores, is regarded as a promising photocatalytic material for solar energy conversion, while the research on GDY in photocatalysis is a less developed field. Herein, the distinctive structure, adjustable band gap, and electronic properties of GDY for photocatalysis is firstly summarized. The construction and progress of GDY-based photocatalysts for solar energy conversion, including H2 evolution reaction (HER), CO2 reduction reaction (CO2RR) and N2 reduction reaction (NRR) are then elaborated. At last, the challenges and perspectives in developing GDY-based photocatalysts for solar fuel production are discussed. It is anticipated that a timely Minireview will be helpful for rapid progress of GDY in solar energy conversion.  相似文献   

14.
石墨炔是由sp和sp2两种杂化碳构成的新型二维碳同素异形体。基于石墨炔化学合成规律和独特优势,利用其他芳炔前体替代六乙炔基苯,可以获得结构特异、尺寸可控的石墨炔基衍生物,而局域碳骨架的改变可以实现石墨炔衍生物性能调控,包括电导率、带隙、迁移率、空腔尺寸和电荷分离等。这类具有优良半导体性能的石墨炔基衍生物可以广泛应用于电化学储能、电催化、光电转换器件、非线性光学等诸多领域。本文主要综述了近年来石墨炔衍生物的优化设计、结构表征和光电性能,并对其代表性应用进行了总结和展望。  相似文献   

15.
从二维碳材料石墨炔(GDY)的分子和电子结构出发,重点论述石墨炔在能源存储和转换两个领域的应用,包括最新的理论和实验进展。石墨炔独特的三维孔隙结构,使得石墨炔在锂存储和氢气存储应用中具备天然的优势,既可以用作锂离子相关的储能器件,包括锂离子电池、锂离子电容器等;也可作为储氢材料,用于燃料电池等。通过掺杂的方法,还能进一步提高石墨炔储锂和储氢的性能。由于sp炔键和sp2苯环的存在,使石墨炔具有多重共轭的电子结构,在具备狄拉克锥的同时,其带隙也可通过多种途径调控,使得石墨炔不仅可以作为非金属高活性催化剂替代贵金属在光催化等方面应用,还可以在太阳能电池的空穴传输层和电子传输层方面获得应用,展现了石墨炔在能源方面独特的应用价值。我们将从理论预测和实验研究两方面介绍该领域目前的研究现状和发展趋势。  相似文献   

16.
石墨炔是一种新型碳材料,自2010年实验室成功制备后受到广泛关注。石墨炔是一种由spsp2杂化碳组成的高度共轭结构。随着石墨炔合成化学的发展,多种不同构型的石墨炔被制备和表征。石墨炔特殊的电子和孔结构,使其在催化领域中具有广泛的应用。本文总结了近年来石墨炔材料在表征方法和光电催化反应方面的研究进展,并探讨了石墨炔未来发展的机遇和挑战。  相似文献   

17.
18.
Carbon dioxide(CO2) is an important and valuable C1 resource for the synthesis of numerous of value-added products. However, efficient fixation and conversion of CO2 into organic carbonates under mild conditions remain great challenges. Herein, graphdiyne(GDY)-based nickel atomic catalysts(Ni0/GDYs) were synthesized through a facile in-situ reduction method. Experimental results showed that the obtained Ni0/GDY had outstanding catalytic performances for converting CO2 into cyclic carbonates with a high reaction conversion(99%) and reaction selectivity(ca. 100%) at 80℃ and under 1 atm(1 atm=101325 Pa). Specially, the activation energy (Ea) value for the Ni0/GDY is 37.05 kJ/mol, lower than those of reported catalysts. The reaction mechanism was next carefully analyzed by using density functional theory(DFT) calculations. Such an excellent catalytic property could be mainly attributed to the high dispersion of active sites on the Ni0/GDY, and the unique incomplete charge transfer properties of GDY-based zero-valent metallic catalysts.  相似文献   

19.
Copper oxide(CuO),due to its low cost,good chemical and physical stability,has recently been given special attention as a potential candidate for antibacterial agents.However,developing novel CuO nanocomposites with improved antibacterial property and unraveling the interface promotion mechanism has been a fundamental challenge for decades.Herein,well-defined CuO/graphdiyne(CuO/GDY)nanostructures with uniformly anchored CuO nanoparticles(ca.4.5 nm)have been fabricated.The CuO/GDY nanostructure exhibited superior E.coli inactivation efficiency,which is nearly 19 times and 7.9 times higher than the bare GDY and commercial CuO,respectively.The improved E.coli inactivation performance was mainly due to the increased reactive O2-species generated by the activation of molecular O2 over CuO/GDY surface.These findings demonstrate the efficient antibacterial activity of well-defined CuO/GDY nanostructures and provide insights on the development of efficient GDY-based antibacterial materials.  相似文献   

20.
Graphdiyne(GDY)is a kind of two-dimensional carbon nanomaterial with specific configurations of sp and sp2 carbon atoms.The key progress in the preparation and application of GDY is bringing carbon materials to a brand-new level.Here,the various properties and structures of GDY are introduced,including the existing strategies for the preparation and modification of GDY.In particular,GDY has gradually emerged in the field of life sciences with its unique properties and performance,therefore,the development of biomedical applications of GDY is further summarized.Finally,the challenges of GDY toward future biomedical applications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号