首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
液相色谱串联质谱法测定养殖水体中孔雀石绿及其代谢物   总被引:1,自引:0,他引:1  
研究利用液相色谱-串联质谱(LC-ESI-MS/MS)测定水产品养殖水体中孔雀石绿及其代谢物隐性孔雀石绿的方法.通过一系列实验对样品前处理条件进行了优化研究,养殖水样经乙酸酸化,净化后,采用HPLC-ESI-MS/MS检测分析.在多反应监测模式(MRM)下,外标法定量,定量限均为0.5μg/kg.在0.5~50μg/L...  相似文献   

2.
利用液相色谱-串联质谱( LC - ESI - MS/MS)测定动物源性食品中的硝呋烯腙残留量.通过实验,对样品前处理及仪器检测条件进行了优化.样品经提取和固相萃取净化后,采用HPLC - ESI - MS/MS进行检测,在多反应监测模式(MRM)下,外标法定量.方法的检出限为2.0μg/kg,在1.0~ 100.0 ...  相似文献   

3.
用液相色谱-电喷雾线性离子阱串联/质谱(LC-ESI-ITMS/MS)在正离子模式下对烟草水提取物中的尼古丁进行了分析:定性分析了尼古丁MS/MS图谱中碎片的可能结构;用尼古丁标准溶液对质谱检测条件进行优化后,在SRM扫描模式下对尼古丁进行定量分析。最低检出限(LOD)可达0.21μg/L;回收率为99%-105%。测试3个不同浓度样品得到的RSD为0.64%-0.72%。实验选用高效的短色谱柱达到了快速定量的目的,适用于对大量样品的分析。  相似文献   

4.
采用超高效液相色谱-串联四极杆质谱(UPLC-MS/MS),在多反应监测(MRM )模式下建立了玉米中9种磺酰脲类除草剂残留的定性定量分析方法.样品浸泡后采用甲醇-丙酮(体积比1:1)提取、浓缩,经C18固相萃取柱净化处理.采用UPLC-ESI MS/MS方法测定,外标法定量.9种磺酰脲类除草剂在0.05~2.0 mg...  相似文献   

5.
建立了同时定性与定量分析动物饲料种24中禁用药物的超高效液相色谱串联质谱(UHPLC-MS/MS)分析方法。样品经Na2HPO4与饱和NaCl溶液共同盐析,乙腈提取,混合阳离子交换固相萃取柱(PCX)净化,乙腈和0.3%甲酸溶液梯度洗脱,经BEH C18色谱柱分离,串联四级杆质谱动态多反应监测正离子模式监测,稳定同位素标记内标法定量。在最佳实验条件下,24种禁用兽药在各自的线性范围内线性关系良好,相关系数(r)均大于0.9960,检出限为1.0μg/kg,定量限为2.0μg/kg,加标回收率在77%~115%之间,相对标准偏差小于10%。本方法的样品前处理过程简单,净化效果好,有效解决了基质效应问题,灵敏度高,适用于各种饲料中多组分禁用兽药的快速定性与定量分析。  相似文献   

6.
建立了一种同时检测鸡蛋中四溴双酚A(TBBP A)、六溴环十二烷(HBCD)和多溴联苯醚(PBDEs)及其衍生物羟基多溴联苯醚(OH-PBDEs)和甲氧基多溴联苯醚(MeO-PBDEs)的凝胶渗透色谱(GPC)-分散固相萃取(DSPE)-液相色谱-串联质谱(HPLC-MS/MS)和气相色谱-负化学源质谱(GC-NCI/MS)的检测方法。样品经正己烷、二氯甲烷(1∶1,V/V)加速溶剂萃取,凝胶渗透色谱净化后,经100 mg十八烷基键合硅胶(C18)分散固相萃取吸附剂去除杂质,液相色谱-串联质谱和气相色谱-负化学源质谱方法测定,外标法定量。在蛋白和蛋黄样品中添加1.0或5.0μg/kg的目标物,其回收率分别为64.5%~97.2%和65.6%~109.2%(除BDE-85为54.8%,OH-BDE-137为47.4%外),相对标准偏差小于20.2%,定量限为0.01~0.2μg/kg。  相似文献   

7.
应用PRiME HLB净化技术,采用超高效液相色谱-串联四极杆质谱(UPLC-MS/MS),建立了水产品中19种喹诺酮类药物残留的检测方法。对样品的净化、浓缩、液相色谱分离及串联质谱等相关检测参数进行了优化。样品经80%乙腈水溶液提取,PRiME HLB固相萃取柱净化,在ACQUITY BEH C_(18)色谱柱(1.7μm,2.1 mm×100 mm)上以甲醇和5 mmol/L乙酸铵水溶液(含0.1%甲酸)为流动相梯度洗脱,液相色谱-串联质谱MRM方式进行定量分析。结果表明:各组分在各自浓度范围内线性关系良好,平均回收率为72.1%~119.9%,相对标准偏差为2.4%~15.6%,检出限均为0.5μg/kg,定量下限均为1.5μg/kg。该方法用于水产品中喹诺酮类药物残留的检测,具有准确、快速、简便、灵敏度高等优点,为水产品中喹诺酮类药物残留的测定提供了新途径。  相似文献   

8.
基于超高效液相色谱-四极杆-飞行时间质谱(UPLC-Q-TOF MS),建立了牛奶中51种激素的高通量筛选和定量方法,并采用信息依赖型采集(IDA)模式建立了51种激素的定性筛选数据库。牛奶样品经乙腈沉淀蛋白后,采用氧化锆包覆硅胶(Z-Sep)填料进一步净化。采用Waters Acquity BEH C18(100 mm×2.1 mm,1.7μm)色谱柱进行分离,UPLC-Q-TOF MS测定,基质匹配曲线外标法定量。牛奶中51种激素的线性范围为0.10~500μg/L,相关系数(r2)均大于0.99;检出限为0.03~1.67μg/kg,定量下限为0.10~5.00μg/kg;在5、10、50μg/kg加标水平下的回收率为44.6%~120%,相对标准偏差为0.90%~20%。利用该方法测定了20份市售牛奶样品,其中19份样品检出孕酮,检出量为0.80~4.51μg/kg;1份样品中含有痕量的氢化可的松,检出量为0.62μg/kg;其他激素均未检出。该方法具有良好的线性、灵敏度、准确度和精密度,可用于多种激素的同时定性定量分析。  相似文献   

9.
《分析试验室》2021,40(10):1166-1170
采用纳升电喷雾源(Nano-ESI)-便携式离子阱质谱(Portable Ion Trap MS)建立了滴眼液杀菌成分苯扎氯铵(BAC)的快速检测方法。在正离子模式下,将滴眼液样品稀释后注入纳升电喷雾源的毛细管,毛细管出口与离子阱质谱进样口距离为10 mm、喷雾电压为2000 V;毛细管电压,毛细管温度和离子漏斗电压分别设为5 V,30℃和40 V。用3种苯扎氯铵的[M-Cl]+峰作为定性判据;用纯物质配制溶液制作定量分析校准曲线。3种苯扎氯铵校准曲线的线性范围1~500 mg/L,相关性系数(R2 0.99);用11次空白样品测试结果评估方法检出限和定量限为0.1,0.33 mg/L,满足限量判定要求。4种实际样品中3类BAC的定量测定结果同高效液相色谱-质谱法无显著性差异。该方法无需联用色谱,分析时间仅为2 min,可应用于滴眼液等保健品中添加剂苯扎氯铵的快速筛查。  相似文献   

10.
分析和比较疾病组及健康对照组的混合样品是血清多肽组生物标记物研究的常用方法,但对健康个体多肽组的差异和共性关注较少.本研究利用纳升液相色谱-高分辨四级杆飞行时间质谱鉴定健康人混合血清样品(20例)的多肽组,阐明血清多肽组的分子量分布等一般特征,进而选取6例个体样品单独分析并与混合样品的分析结果进行比较,说明正常健康样品之间的个体差异和共同成分.结果表明,可鉴定序列的血清多肽组的分子量范围在7000 Da以下,纤维蛋白原α链等蛋白质所属肽段的检出频率最高,肽段在蛋白质水平上分布具有不均一性,排在前10%的蛋白质占据了约50%的总肽段,而后40%的蛋白质只有1条检出肽段.此外,在所有样品中都检测到了来自于8个蛋白质的12个共同肽段,检测到了N端乙酰化、氨基酸氧化、磷酸化、脱氨化和脱水等翻译后修饰和明显的阶梯序列现象.本研究在肽段序列水平分析了血清多肽组的基本特征和个体差异,可为血清多肽组生物标志物研究提供参考.  相似文献   

11.
Human plasma contains a complex matrix of proteolytically derived peptides (plasma peptidome) that may provide a correlate of biological events occurring in the entire organism. Analyzing these peptides from a small amount of serum/ plasma is difficult due to the complexity of the sample and the low levels of these peptides. Here, we describe a novel peptidome analysis approach using multiwalled carbon nanotubes (MWCNTs) as an alternative adsorbent to capture endogenous peptides from human plasma. Harvested peptides were analyzed by using liquid chromatography-mass spectrometry as a means of detecting and assessing the adsorbed molecules. The improved sensitivity and resolution obtained by using liquid chromatography-mass spectrometry allowed detection of 2521 peptide features (m/z 300-1800 range) in about 50 microL of plasma. 374 unique peptides were identified with high confidence by two-dimensional liquid chromatography system coupled to a nano-spray ionization linear ion trap-mass spectrometer. High recovery of BSA digest peptides enriched with MWCNTs, in both standard buffer and high abundance protein solution, was observed. Comparative studies showed that MWCNTs were superior to C18 and C8 for the capture of the smaller peptides. This approach could hold promise of routine plasma peptidome analysis.  相似文献   

12.
Mass spectrometry (MS)‐based quantitative proteomics has become a critical component of biological and clinical research for identification of biomarkers that can be used for early detection of diseases. In particular, MS‐based targeted quantitative proteomics has been recently developed for the detection and validation of biomarker candidates in complex biological samples. In such approaches, synthetic reference peptides that are the stable isotope labeled version of proteotypic peptides of proteins to be quantitated are used as internal standards enabling specific identification and absolute quantification of targeted peptides. The quantification of targeted peptides is achieved using the intensity ratio of a native peptide to the corresponding reference peptide whose spike‐in amount is known. However, a manual calculation of the ratios can be time‐consuming and labor‐intensive, especially when the number of peptides to be tested is large. To establish a liquid chromatography/matrix‐assisted laser desorption/ionization time‐of‐flight tandem mass spectrometry (LC/MALDI TOF/TOF)‐based targeted quantitative proteomics pipeline, we have developed a software named Mass Spectrometry based Quantification (MSQ). This software can be used to automate the quantification and identification of targeted peptides/proteins by the MALDI TOF/TOF platform. MSQ was applied to the detection of a selected group of targeted peptides in pooled human cerebrospinal spinal fluid (CSF) from patients with Alzheimer's disease (AD) in comparison with age‐matched control (OC). The results for the automated quantification and identification of targeted peptides/proteins in CSF were in good agreement with results calculated manually. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
糖尿病是一种全身性代谢紊乱综合征,患者高血糖的形成与肝脏、胰脏、肠道、脂肪肌肉组织、肾脏、脑等多脏器的功能失调相关。在分子水平上呈现糖尿病的生物分子疾病谱图对糖尿病的临床早期诊断、分子分型及其病理过程的理解可提供更加全面的数据支持。本工作应用多肽组学分析技术,针对健康组、糖尿病前期组和2型糖尿病患者组临床血清样品进行内源性多肽定性、定量分析,共鉴定到690条可靠血清内源性肽段,其中163条为统计学差异血清内源性多肽,为2型糖尿病早期筛查、早期诊断及分子分型等提供了定量多肽组支持。  相似文献   

14.
Peptides in urine are excreted by kidney from the blood and tissues, which are composed of a large amount of hormones, cytokines, regulatory factors and the metabolized fragments of proteins. The peptide distribution in urine will reflect the physiological and pathophysiological processes in body. In past, limited information was reported about the composition of the peptides in urine. One possible reason is that the peptides in urine are fairly low abundant and there are high concentrations of salts and organic metabolites in the urine. In this report, we extracted the peptides from human urine by highly ordered mesoporous silica particles with the pore size of 2 nm, which will exclude the high molecular weight proteins over 12 kDa. The extracted peptides were then separated into fractions according to their molecular weight by size exclusion chromatography. Each of the fractions was further analyzed by MALDI-TOF MS and μRPLC–MS/MS. Totally, 193 peptides were identified by two-dimensional SEC/μRPLC–MS/MS analysis. By analyzing the progenitor protein of the peptides; we found that two-thirds of the proteins differed from the reported urine proteome database, and the high abundant proteins in urine proteome were less detected in the urine peptidome. The developed extraction and separation methods were efficient for the profiling of the endogenous peptides in human urine. The peptidome in human urine was complementary to the human urinary proteome and may provide an emerging field for biomarker discovery.  相似文献   

15.
A strategy involving the fixed-charge sulfonium ion derivatization, stable isotope labeling, capillary high- performance liquid chromatography and automated data dependent neutral loss scan mode tandem mass spectrometry (MS/MS) and "pseudo multiple mass spectrometry (MS(3))" product ion scans in a triple quadrupole mass spectrometer has been developed for the "targeted" gas-phase identification, characterization and quantitative analysis of low abundance methionine-containing peptides present within complex protein digests. Selective gas-phase "enrichment" and identification is performed via neutral loss scan mode MS/MS, by low energy collision-induced dissociation of the derivatized methionine side chain, resulting in the formation of a single characteristic product ion. Structural characterization of identified peptides is then achieved by automatically subjecting the characteristic neutral loss product ion to further dissociation by data dependent product ion scan mode pseudo MS(3) under higher collision energy conditions. Quantitative analysis is achieved by measurement of the abundances of characteristic product ions formed by sequential neutral loss scan mode MS/MS experiments from "light" ((12)C) and "heavy" ((13)C) stable isotope encoded fixed-charge derivatized peptides. In contrast to MS-based quantitative analysis strategies, the neutral loss scan mode MS/MS method employed here was able to achieve accurate quantification for individual peptides at levels as low as 100 fmol and at abundance ratios ranging from 0.1 to 10, present within a complex protein digest.  相似文献   

16.
Proteomics studies aiming at a detailed analysis of proteins, and peptidomics, aiming at the analysis of the low molecular weight proteome (peptidome) offer a promising approach to discover novel biomarkers valuable for different crucial steps in detection, prevention and treatment of disease. Much emphasis has been given to the analysis of blood, since this source would by far offer the largest number of meaningful biomarker applications. Blood is a complex liquid tissue that comprises cells and extra-cellular fluid. The choice of suitable specimen collection is crucial to minimize artificial occurring processes during specimen collection and preparation (e.g. cell lysis, proteolysis). After specimen collection, sample preparation for peptidomics is carried out by physical methods (filtration, gel-chromatography, precipitation) which allow for separation based on molecular size, with and without immunodepletion of major abundant proteins. Differential Peptide Display (DPD) is an offline-coupled combination of Reversed-Phase-HPLC and MALDI mass spectrometry in combination with in-house developed data display and analysis tools. Identifications of peptides are carried out by additional mass spectrometric methods (e.g. online LC-ESI-MS/MS). In the work presented here, insights into semi-quantitative mass spectrometric profiling of plasma peptides by DPD are given. This includes proper specimen selection (plasma vs. serum), sample preparation, especially peptide extraction, the determination of sensitivity (i.e. by establishing detection limits of exogenously spiked peptides), the reproducibility for individual as well as for all peptides (Coefficient of Variation calculations) and quantification (correlation between signal intensity and concentration). Finally, the implications for clinical peptidomics are discussed.  相似文献   

17.
Multiple reaction monitoring (MRM) is commonly used for the quantitative analysis of proteins during mass pectrometry (MS), and has excellent specificity and sensitivity for an analyte in a complex sample. In this study, a pseudo-MRM method for the quantitative analysis of low-abundance serological proteins was developed using hybrid quadrupole time-of-flight (hybrid Q-TOF) MS and peptide affinity-based enrichment. First, a pseudo-MRM-based analysis using hybrid Q-TOF MS was performed for synthetic peptides selected as targets and spiked into tryptic digests of human serum. By integrating multiple transition signals corresponding to fragment ions in the full scan MS/MS spectrum of a precursor ion of the target peptide, a pseudo-MRM MS analysis of the target peptide showed an increased signal-to-noise (S/N) ratio and sensitivity, as well as an improved reproducibility. The pseudo-MRM method was then used for the quantitative analysis of the tryptic peptides of two low-abundance serological proteins, tissue inhibitor of metalloproteinase 1 (TIMP1) and tissue-type protein tyrosine phosphatase kappa (PTPκ), which were prepared with peptide affinity-based enrichment from human serum. Finally, this method was used to detect femtomolar amounts of target peptides derived from TIMP1 and PTPκ, with good coefficients of variation (CV 2.7% and 9.8%, respectively), using a few microliters of human serum from colorectal cancer patients. The results suggest that pseudo-MRM using hybrid Q-TOF MS, combined with peptide affinity-based enrichment, could become a promising alternative for the quantitative analysis of low-abundance target proteins of interest in complex serum samples that avoids protein depletion.  相似文献   

18.
Nowadays, the most common strategies used in quantitative proteomics are based on isotope-coded labeling followed by specific molecule mass spectrometry. The implementation of inductively coupled plasma mass spectrometry (ICP-MS) for quantitative purposes can solve important drawbacks such as lack of sensitivity, structure-dependent responses, or difficulties in absolute quantification. Recently, lanthanide-containing labels as metal-coded affinity tag (MeCAT) reagents have been introduced, increasing the interest and scope of elemental mass spectrometry techniques for quantitative proteomics. In this work one of the first methodologies for absolute quantification of peptides and proteins using MeCAT labeling is presented. Liquid chromatography (LC) interfaced to ICP-MS has been used to separate and quantify labeled peptides while LC coupled to electrospray ionization mass spectrometry served for identification tasks. Synthetic-labeled peptides were used as standards to calibrate the response of the detector with compounds as close as possible to the target species. External calibration was employed as a quantification technique. The first step to apply this approach was MeCAT-Eu labeling and quantification by isotope dilution ICP-MS of the selected peptides. The standards were mixed in different concentrations and subjected to reverse-phase chromatography before ICP-MS detection to consider the column effect over the peptides. Thus, the prepared multi-peptide mix allowed a calibration curve to be obtained in a single chromatographic run, correcting possible non-quantitative elutions of the peptides from the column. The quantification strategy was successfully applied to other labeled peptides and to standard proteins such as digested lysozyme and bovine serum albumin.  相似文献   

19.
Tian R  Ren L  Ma H  Li X  Hu L  Ye M  Wu R  Tian Z  Liu Z  Zou H 《Journal of chromatography. A》2009,1216(8):1270-1278
We report the development of a combined strategy for high capacity, comprehensive enrichment of endogenous peptide from complex biological samples at natural pH condition. MCM-41 nanoparticles with highly ordered nanoscale pores (i.e. 4.8nm) and high-surface area (i.e. 751m(2)/g) were synthesized and modified with strong cation-exchange (SCX-MCM-41) and strong anion-exchange (SAX-MCM-41) groups. The modified nanoparticles demonstrated good size-exclusion effect for the adsorption of standard protein lysozyme with molecular weight (MW) of ca. 15kDa; and the peptides with MW lower than this value can be well adsorbed. Step elution of the enriched peptides with five salt concentrations presented that both modified nanoparticles have high capacity and complementarity for peptides enrichment, and the SAX-MCM-41 nanoparticles has obviously high selectivity for acidic peptides with pI (isoelectric point) lower than 4. Large-scale enrichment of endogenous peptides in 2mg mouse liver extract was achieved by further combination of SCX-MCM-41 and SAX-MCM-41 with unmodified MCM-41 nanoparticles. On-line 2D nano-LC/MS/MS was applied to analyze the enriched samples, and 2721 unique peptides were identified in total. Two-dimensional analysis of MW versus pI distribution combined with abundance of the identified peptides demonstrated that the three types of nanoparticles have comprehensive complementarity for peptidome enrichment.  相似文献   

20.
Structural analogs are evaluated as peptide internal standards for protein quantification with liquid chromatography‐multiple reaction monitoring mass spectrometry (LC‐MRM); specifically, single conservative amino acid replacements (SCAR) are performed to create tagged standards that differ by the addition or subtraction of a single methylene group in one amino acid side chain. Because the performance of stable isotope‐labeled standards (SIS) has been shown to be superior to structural analogs, differences in both development and quantitative performance between assays based on SIS and SCAR peptides are explored. To establish an assay using the structural analogs, analysis of endogenous, SCAR and SIS peptides was performed to examine their ion signal, fragmentation patterns and response in LC‐MRM. Performance of SCAR and SIS peptides was compared for quantification of epidermal growth factor receptor from lung cancer cell lysates and immunoglobulin M in the serum of multiple myeloma patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号