首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
提出了一种组蛋白乙酰化修饰检测的耦合增强拉曼散射生物传感新方法. 该方法以金纳米粒子为表面增强拉曼散射(SERS)基底, 表面修饰乙酰化组蛋白H3多肽为识别探针, 对甲氧基苯硫酚(4-MTP)为拉曼标记物, 制备了组蛋白乙酰化修饰检测的SERS纳米探针. 通过紫外可见吸收光谱与动态光散射分析, 证实了组蛋白乙酰化抗体可介导SERS纳米粒子发生可控组装与聚集, 使SERS纳米探针间发生局域电场共振耦合, 产生显著增强的SERS信号. 基于此, 通过待测抗原与SERS纳米探针对抗体的竞争性相互作用, 我们设计了组蛋白乙酰化修饰检测的竞争免疫SERS生物传感方法. 该法操作简便、快速、重现性好, 且裸眼即能进行可视化鉴定. 通过设计不同染料标记的SERS纳米探针, 该法有望实现多种组蛋白修饰的复合检测.  相似文献   

2.
基于银纳米粒子构建荧光传感平台用于核酸检测   总被引:1,自引:0,他引:1  
张瑛洧  李海龙  孙旭平 《分析化学》2011,39(7):998-1002
报道了基于银纳米粒子构建的荧光传感平台,并用于核酸检测.此荧光传感平台对核酸检测基于以下策略:首先,荧光团标记的单链DNA探针被吸附到银纳米粒子的表面,荧光团与银纳米粒子近距离接触,发生荧光猝灭;加入与探针DNA序列互补的目标DNA,两者杂交形成双链DNA,并从银纳米粒子的表面脱离,荧光得到恢复.这种银纳米粒子构建的荧...  相似文献   

3.
本工作将罗丹明B分子通过共价结合的方式成功地包裹在二氧化硅纳米粒子中,制备的纳米粒子荧光强度和罗丹明B分子相比提高了1000倍.对此硅纳米荧光粒子进一步进行了链亲和素修饰,成功制备了可特异性结合生物素修饰蛋白的纳米荧光检测探针.以反相蛋白质芯片检测为模式,研究了此探针对微量蛋白的检测性能.实验中将不同微量浓度的人IgG固定于醛基修饰玻璃片表面,并加入生物素标记的抗人IgG,结果显示在800fg~100pg含量的微量蛋白检测中此纳米荧光探针具有良好的线性关系,最小蛋白检测量可达100fg.与商品化亲和素偶联cy3荧光探针对比分析发现,本方法制备的荧光探针对蛋白的检测灵敏度可提高8倍,且具有成本低,生物修饰简单等优点.  相似文献   

4.
利用聚电解质的静电吸附作用(层层组装),在Au纳米粒子表面包裹上不同层数的二氧化钛前驱体TALH,通过退火形成Au@TiO2复合纳米粒子.以苯硫酚(TP)作为探针分子对退火前复合纳米粒子不同壳层厚度的SERS效应进行表征;可以发现:SERS信号强度的变化跟壳层厚度密切相关,当Au表面包裹至三层TALH时,信号几乎完全消失.此外,结合紫外照射,利用SERS对亚甲基蓝在TiO2壳层表面的光催化降解过程进行现场研究.结果表明:MB的降解主要经历了从多体及二聚体吸附逐渐向单体吸附方式转变,随后又经历了一个脱甲基的过程.因此,本工作发展了将一种紫外催化与现场SERS检测相结合的技术,该技术有望发展成为检测光催化过程,研究表面催化机理的一种强有力的工具  相似文献   

5.
局域表面等离激元共振(LSPR)显微探针的检测灵敏性主要取决于针尖上修饰的纳米粒子的LSPR性质.本文采用阴离子辅助法,在水溶液中通过调节Au核与Ag+的物质的量之比,实现Au核上不同厚度的Ag壳层包覆,可控地一步合成均一性好、银壳层较厚(≥10 nm)的核壳比不同的球形Au@Ag纳米粒子.通过扫描电镜(SEM)、透射电镜(TEM)及扫描透射电子显微镜X射线能谱(STM-EDS)线扫描分析对不同核壳比的Au@Ag纳米粒子进行形貌组成表征,证实了所合成核壳结构的可控性.将不同核壳比的Au@Ag纳米粒子置于不同折射率溶液中进行纳米粒子介电敏感性的研究,表明7.5 nm Au@28 nm Ag的纳米结构具有最高的品质因子.同时将不同核壳比的Au@Ag纳米粒子置于不同折射率的非导电性基底上进行单颗纳米粒子散射性质的研究,结果表明7.5 nm Au@28 nm Ag纳米粒子适合作为LSPR显微探针的高检测灵敏性纳米结构之一.  相似文献   

6.
表面增强拉曼散射(surface-enhanced Raman scattering, SERS),是指吸附在粗糙的金属纳米结构表面的被分析物,在光照射下其拉曼光谱获得显著增强的异常表面光学现象。近年来,SERS技术已广泛地用于物质检测和生物传感等研究,在生物医学领域表现出巨大的应用潜力并取得了令人瞩目的研究成果。本文回顾了SERS探针技术在细胞识别、成像与诊疗等方面的应用及最新研究进展,重点介绍了SERS细胞探针的构建方法与原理,以及基于SERS探针的细胞检测应用策略,并讨论了SERS探针技术在细胞检测中仍有待解决的关键问题。  相似文献   

7.
利用自行设计组装的以白色发光二极管为光源的表面等离子体子共振传感器实验装置, 检测了不同材质包裹的磁性纳米粒子连接靶向DNA与生物素化DNA探针的结合程度. 结果表明, 与聚苯乙烯磁性微球连接的靶向DNA相比, Fe3O4@SiO2核壳式纳米微球连接的靶向DNA与生物素化的DNA探针结合速率较快, 且其相对标准偏差较小.  相似文献   

8.
以单个椭球形Fe2O3@Au核壳粒子作为SERS活性基底, 苯硫酚(TP)作为探针分子, 研究了椭球形粒子表面SERS效应的分布, 对比了粒子尖端以及中间SERS效应的差别. 为了得到单个粒子表面不同部分对SERS强度的贡献差别, 通过数学模拟和解析了探针分子SERS的二维成像(2D-mapping)信号, 获得了粒子边缘不同点的SERS效应. 模拟分析结果表明, 当xy平面内粒子在垂直入射(z轴)平面波作用下, 单个椭球形Fe2O3@Au核壳粒子表面单位面积上的SERS强度相差极大, 粒子长轴方向端点附近单位面积上的SERS效应最大, 而其它表面部分较弱, 其中与短轴平行方向的表面附近为最弱, 差异可达到约2~3个数量级. 若考虑SERS增强主要为电磁场增强的尖端效应, 则单个椭球形粒子尖端的局域感应电磁场为垂直方向的5倍.  相似文献   

9.
金纳米粒子探针的合成及应用   总被引:3,自引:1,他引:2  
由于金纳米粒子(AuNPs)具有与大小、形状和聚集程度相关的物理和化学特性,被广泛应用于各种生物分析和生物医学检测技术中,并发展成具有高选择性、高灵敏度的生物分析检测手段。以AuNPs为探针的分析方法通常具有简单、快速、灵敏度高的优点,并能应用于实际样品检测。本文综述了目前生物分子修饰的AuNPs探针的合成及其在检测金属离子、小分子、DNA、蛋白质和细胞内分析等方面的应用。  相似文献   

10.
金核银壳纳米粒子薄膜的制备及SERS活性研究   总被引:5,自引:0,他引:5  
采用柠檬酸化学还原法制备金溶胶, 通过自组装技术在石英片表面制备金纳米粒子薄膜, 在银增强剂混合溶液中反应获得金核银壳纳米粒子薄膜. 用紫外-可见吸收光谱仪和原子力显微镜(AFM)研究了不同条件下制备的金核银壳纳米粒子薄膜的光谱特性和表面形貌, 并以结晶紫为探针分子测量了金核银壳纳米粒子薄膜的表面增强拉曼光谱(SERS). 结果表明, 金纳米粒子薄膜的分布、银增强剂反应时间的长短对金核银壳纳米粒子薄膜的形成均有重要影响. 制备过程中, 可以通过控制反应条件获得一定粒径的、具有良好表面增强拉曼散射活性的金核银壳纳米粒子薄膜.  相似文献   

11.
生物传感器因选择性高、分析速度快、准确度高等特点,在生物医学、环境监测及食品安全等领域应用广泛.纳米探针材料是生物传感器中的核心部件,对检测信号的输出和放大,起到至关重要的作用.本文总结了近十年来本团队利用智能高分子精准调控纳米粒子合成的研究成果,发展了多种生长模式,量身定制出三十多种高效可医用探针材料;通过智能高分子修饰纳米探针表面,实现了不同维度(1D、2D和3D)的宏观可控自组装.最后,基于设计的探针材料及其组装结构,构建了一系列生物传感器,探索了其在食品安全检测和医疗诊断领域的应用.  相似文献   

12.
以三联吡啶钌(Ru(bpy)3)为内核材料,通过反相微乳液法合成了表面带氨基的核壳结构荧光纳米粒子Ru(bpy)3/SiO2,利用透射电子显微镜、荧光光谱、紫外-可见光谱等手段进行表征,并进行了光稳定性、荧光分子泄露与纳米粒子表面氨基测定等实验,结果表明: 所合成的纳米粒子表面带氨基活性基团,每毫克纳米粒子约含385 nmol氨基,纳米粒子呈规则球形,大小均一,单分散性好,平均粒径为(70±6) nm,具有很好的光稳定性.用100 W氙灯在最大发射波长照射90 min后,其荧光强度仅衰减8%;在水溶液中不易发生染料泄露,连续超声1 h后,染料泄露少于0.05%.以合成的纳米粒子作荧光探针标记链霉亲和素后应用于蛋白质微阵列芯片检测HIV p24抗原.结果显示,荧光强度与p24浓度呈良好的正相关性,检出限为3.1 μg/L.本纳米粒子作为新型荧光探针,可应用于高灵敏检测的蛋白质微阵列芯片及荧光免疫分析等系统.  相似文献   

13.
姜炜  黄蕾  张玉忠 《分析化学》2011,39(7):1038-1042
构建了基于金纳米粒子/聚阿魏酸/多壁碳纳米管(AuNPs/PFA/MWCNTs)修饰电极的DNA计时库仑法生物传感器.利用循环伏安技术在多壁碳管修饰的玻碳电极表面上聚合一层阿魏酸,在恒电位条件下,在阿魏酸表面沉积金纳米粒子,巯基DNA作为探针通过金硫键固定在金纳米粒子表面.电化学交流阻抗技术(EIS)与扫描电镜(SEM...  相似文献   

14.
构建了一个适配体修饰的CdTe纳米探针,利用磁性纳米粒子的分离技术,采用示差脉冲伏安法检测凝血酶。磁性纳米粒子作为分离材料,CdTe纳米粒子作为电化学探针,通过凝血酶的特异性识别,适配体从DNA双链中解旋,并与凝血酶结合形成G-四重体结构,达到检测凝血酶的目的,检出限达0.13pmol/L。该方法灵简便、灵敏、成本低,并成功用于实际样品的检测。此外,该方法可被广泛应用于蛋白质监测和疾病诊断。  相似文献   

15.
周小会  颜红  肖守军 《无机化学学报》2011,27(11):2291-2297
通过简便的化学沉积法在多孔硅上制备银纳米粒薄膜用于表面增强红外光谱检测。通过Ag+与多孔硅表面的SiHx发生氧化还原反应将银纳米粒子沉积在多孔硅表面。红外探针分子溶解于无水乙醇中进而被均匀分散在多孔硅表面,实验结果显示:对氨基苯硫酚、对氨基苯甲酸和对氟苯硫酚3个探针分子的红外峰分别最大增强了10、85和21倍。银纳米粒的大小和形状等物理特性、探针分子是否有与银表面进行强结合的基团和芳烃结构、以及表面选律等因素影响表面增强红外的吸收效应。  相似文献   

16.
王咏婕  王伟 《化学学报》2017,75(11):1061-1070
基于光学显微术的单粒子传感技术是一种将光学显微镜等具有空间分辨能力的研究工具应用于分析传感领域的检测技术.该技术将单个纳米粒子视作一个完整的纳米传感器,分子识别和信号转换均在单个纳米粒子界面上完成,信号读取则通过不同种类的光学显微镜来实现.与宏观的纳米传感器相比,单粒子传感技术通过对单个纳米粒子的光学特征信号进行测量、计数和追踪,可以获得局域微区内分析物的定性和定量信息,从而具有高灵敏度、高通量和可用于微观复杂体系的动态检测等显著优点.首先简要回顾了单粒子光学传感技术的发展历史和国内外研究现状,随后介绍了其主要技术特点,并重点综述了该领域近五年内的重要研究成果.最后指出通过纳米探针、光学成像技术和多维数据处理等多方面的持续发展,可进一步提高单粒子光学传感器的性能,有望使其在分析科学、生命科学和材料科学等诸多领域获得更加广泛和深入的应用.  相似文献   

17.
在超声条件下采用二步电解方法在十六烷基三甲基溴化铵/丙酮/水三组分体系中合成金纳米粒子. 首先采用恒电流或电位的阶跃方法, 使体系中生成较小的金纳米粒子并作为晶种; 接着采用电位双阶跃方法, 使金纳米粒子在原来基础上继续生长, 控制电解电量可获得不同大小的金纳米粒子. 通过静电作用在洁净的单晶硅片表面组装金纳米粒子, 获得具有不同形貌的硅片, 并以此作为表面增强拉曼散射基底, 以吡啶为探针分子, 研究了不同基底的表面增强拉曼散射活性, 结果表明吡啶谱峰强弱与纳米粒子在硅片表面的排列形貌有关.  相似文献   

18.
构建了具有表面增强拉曼散射(SERS)活性的二维有序环状与盘状的银纳米粒子结构, 利用CTAB包覆银纳米粒子的氯仿溶液直接在图案化的金基底上进行去湿, 当改变银纳米粒子的浓度时可以得到不同的图案. 利用原子力显微镜(AFM)对其结构进行了表征, 以4-巯基吡啶作为探针分子, 采用表面增强拉曼成像技术研究了这种基底的SERS活性, 这将为SERS的研究开拓新的领域.  相似文献   

19.
基于金纳米粒子的QCM实时检测DNA错配的研究   总被引:2,自引:0,他引:2  
利用石英晶体微天平(QCM)技术,用双硫醇分子作为连接剂,将金纳米粒子固定于金电极表面,以人类p53基因片断为DNA探针,研究了其在QCM金电极表面的固定、杂交和错配,重点探讨了金纳米粒子修饰的DNA错配碱基个数和错配位点对杂交的影响。在实验条件下,金纳米粒子在QCM金电极表面的修饰使其灵敏度得到了明显提高;而且,错配碱基个数和错配碱基位点的差异都对杂交产生了不同程度的影响。  相似文献   

20.
一种基于纳米二氧化硅增强凝集反应的压电免疫传感器   总被引:1,自引:0,他引:1  
本文提出了一种基于抗体包被纳米粒子的简单快速的压电免疫凝集法,用于蛋白质检测。该方法原理是利用羊抗人IgG(G-anti-hIgG)包被的二氧化硅(或金)纳米粒子和人IgG(hIgG)发生免疫凝集反应而使得压电晶体频率发生改变进行测定。当凝集反应发生时,修饰在探针表面的G-anti-hIgG通过hIgG与G-anti-hIgG包被的纳米粒子结合,将质量效应和粘弹性因素叠加作用于压电晶体。结果表明这使得背景值大幅减小而信号明显增强。另外,对修饰后了抗体及结合免疫复合物的探针表面进行了SEM表征,对使用聚乙二醇作为增敏剂和实验最佳离子强度、pH值进行了优化选择。该传感器检测hIgG线性范围是0.26-16.7 mg mL-1,最低检出限为84 ng mL-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号