首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
过氧化氢生产用铂催化剂的制备及性能研究   总被引:2,自引:0,他引:2  
用浸渍法制备了过氧化氢生产用蒽醌加氢负载型铂催化剂,考察了载体的预处理温度、不同氧化物载体、铝钛复合载体中TiO2的含量以及La、Ce助剂对催化剂性能的影响;用BET法测定了催化剂的表面积;采用H2-O2滴定法测定Pt的分散度,并在固定床反应器上考察了催化剂的性能。结果发现,用经1223K焙烧过的载体及在Al2O3载体中引入10%-20%TiO2,并引入一定量La、Ce助剂所制备的催化剂,具有良好的活性和稳定性,因而具有较好的工业应用前景。  相似文献   

2.
助剂对甲烷部分氧化制合成气镍基催化剂性能的影响   总被引:4,自引:4,他引:4  
考察了添加助剂铈、镧和钙对镍基催化剂反应性能的影响,发现助剂对以α-Al2O3为载体的镍基催化剂的调变作用比以γ-Al2O3为载体的镍基催化剂好,且助剂铈对催化剂的性能改善最好。在此基础上,研究了不同载量的铈对催化剂性能的影响。结果表明,铈的质量分数为1%时对催化剂的性能改善最好。同时采用XRD、XPS、TG等技术,研究了助剂铈对10%Ni/γ-Al2O3催化剂的改性作用。XRD分析表明,铈负载量较低时,催化剂中的CeO2高度分散在催化剂表面,铈负载量较高时,CeO2形成微晶颗粒,降低了催化活性。  相似文献   

3.
Co助剂对稀燃NOx阱Pt/Ba-Al-O结构和性能的影响   总被引:2,自引:0,他引:2  
 采用共沉淀-浸渍法制备了Pt/Co-Ba-Al-O催化剂,用X射线衍射、X射线吸收近边结构和扩展X射线吸收精细结构等手段表征了催化剂的微观结构,并在连续流动微型反应器上测定了催化剂对NOx的储存性能.载体经过800℃焙烧后,Co物种主要以四面体配位的铝酸钴相存在.在富氧条件下,高分散的小颗粒铝酸钴相促进了NO向NO2的转化,大大改善了催化剂对NOx的储存性能.铂物种则以小的金属原子簇形式存在,分散度很高.钴助剂的添加改善了氧化铝相的分散度,抑制了金属铂原子簇与载体的相互作用,使铂在催化剂表面分散得更均匀,从而有利于NOx的储存.  相似文献   

4.
采用溶胶-凝胶法,在800℃下焙烧制备了不同镧添加量的载体,再用浸渍法制得用于非均相合成碳酸二苯酯的催化剂,通过XRD,SEM和TEM对载体及催化剂活性的影响。结果表明,当镧添加量为9.32%时,催化剂及载体的各种性能都较好。  相似文献   

5.
Mo、W对Ni/γ-Al2O3催化剂烯烃加氢性能的影响   总被引:1,自引:0,他引:1  
采用浸渍法制备了一系列NiM/γ-Al2O3(M=Mo、W)催化剂。通过馏分油(沸点70℃~350℃)烯烃的加氢饱和,考察了Mo、W对Ni基催化剂加氢性能的影响,并采用TPR、XRD、XPS对催化剂进行表征。TPR结果表明,添加助剂Mo(W)降低了低温还原峰温度,但还原度有所降低,而且NiMo催化剂还原度的降低幅度比NiW催化剂更大;XRD结果表明,Mo(W)的添加提高了活性组分Ni的分散度,并且Mo的助分散作用优于W;XPS结果表明,Mo(W)的引入提高了催化剂体系“表面NiAl2O4”的比例,Ni2p3/2谱峰的化学位移说明助剂的添加增强了Ni与载体γ-Al2O3之间的相互作用。  相似文献   

6.
铈和镧改性γ-Al2O3担载Pd催化剂的结构效应   总被引:1,自引:0,他引:1  
分别以镧-铈、铈-镧顺序浸渍和镧铈共浸渍的方式在γ-Al2O3载体上引入助剂La2O3和CeO2,然后担载Pd制备了一系列催化剂.以甲醇分解为探针反应,采用XRD、EXAFS和XPS对催化剂的体相和表面结构进行表征,用BET法测定比表面积,并进行了吸附态CO的FTIR研究.结果表明,La2O3容易进入CeO2的晶格中,促进了CeO2在γ-Al2O3上的分散.但不同的La2O3、CeO2加入方式对活性组分Pd在改性载体上的分散度、优势暴露面及其与CeO2之间的相互作用产生不同的影响.关联甲醇分解性能测试结果说明,Pd在载体上的高度分散以及Pd和CeO2之间通过界面产生的强相互作用是催化剂具有高活性的关键.  相似文献   

7.
采用溶胶-凝胶法, 在800 ℃下焙烧制备了不同镧添加量的载体, 再用浸渍法制得用于非均相合成碳酸二苯酯的催化剂. 通过XRD、 SEM和TEM 对载体及催化剂的表征, 探讨了镧添加量对载体晶相、孔径、粒径和比表面积的影响, 并考察了镧添加量对催化剂活性的影响. 结果表明, 当镧添加量为9.32%时, 催化剂及载体的各种性能都较好.  相似文献   

8.
锆改性钴基费-托合成催化剂催化性能的研究   总被引:6,自引:0,他引:6  
 考察了助剂锆和金属钴负载量对锆改性Co/Al2O3催化剂催化性能的影响.结果表明,锆助剂能够高度分散在氧化铝载体上,而活性组分钴以一定尺寸存在;锆的添加能够明显地提高Co/Al2O3催化剂的催化活性和C5+烃选择性,但助剂锆含量对催化剂催化性能的影响不大;在锆存在下,催化剂的催化活性随金属钴含量先升高后降低.进一步的研究表明,催化剂上烃形成速率的提高可能是由于锆助剂能够增加催化剂的活性位数目,增强桥式CO吸附的强度,在Co-ZrO2间形成界面.  相似文献   

9.
采用溶胶 -凝胶法 ,在 80 0℃下焙烧制备了不同镧添加量的载体 ,再用浸渍法制得用于非均相合成碳酸二苯酯的催化剂 .通过 XRD、 SEM和 TEM对载体及催化剂的表征 ,探讨了镧添加量对载体晶相、孔径、粒径和比表面积的影响 ,并考察了镧添加量对催化剂活性的影响 .结果表明 ,当镧添加量为 9.32 %时 ,催化剂及载体的各种性能都较好  相似文献   

10.
以介孔分子筛SBA-15为载体, 采用浸渍法制备了镍质量分数(w)为12.5%, 并且分别添加质量分数(w)为2.5%的镧、铈、镁、钙、锶等助剂的系列Ni基催化剂. 以CH4/CO2体积比为2:1的模拟生物沼气和适量氧气作为原料气, 在常压固定床反应器上评价了催化剂对模拟生物沼气重整制合成气的反应性能. 采用X射线粉末衍射(XRD)、N2吸附/脱附、透射电子显微镜(TEM)、X射线光电子能谱(XPS)及H2程序升温还原(H2-TPR)等对催化剂的结构进行了表征. 催化活性评价显示, 添加镧助剂的2.5%La/12.5%Ni/SBA-15催化剂比添加铈、镁、钙、锶等助剂的催化剂具有更高的催化活性, 并且具有很好的稳定性. 因此, 文中着重研究了镧助剂对催化剂结构和模拟生物沼气重整制合成气的反应性能的影响. 结果表明, 镧能明显提高Ni/SBA-15催化剂的表面镍含量, 同时还具有很好的抗积炭作用, 在850 ℃的温度下反应820 h没有发现积炭生成, 这些可能是提高催化剂性能和稳定性的重要因素.  相似文献   

11.
考察了以硝酸镍、氯化镍、硫酸镍、醋酸镍及硝酸六氨合镍5种Ni盐制备的Ni/MgO/Al2O3催化剂在CO2与CH4重整制合成气反应中的催化活性,发现Ni前体对活性有明显的影响,以硝酸镍、醋酸镍、硝酸六氨合镍为前体制备的Ni催化剂,反应性较高;以硫酸镍为前体制备的Ni催化剂,可能由于硫中毒等原因而显示出很低的活性;以氯化镍为前体制备的 Ni催化剂,其活性与制备方法有关,未经烧而直接还原的催化剂显示出较好的活性,X-射线粉末衍射(XRD)、BET比表面积及反应后的积量测定结果表明,以硝酸镍、醋酸镍、硝酸六氨合镍为前体制备的Ni催化剂,表面分散性好,比表面积大,积炭量少。  相似文献   

12.
Four perovskite-type complex oxides (LaNiO3, La2NiO4, LaCoO3 and La2CoO4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and the citric acid complexing method (CC). The catalysts were characterized by XRD and TPR. After reduction, the activity of the catalysts in the CO2 reforming of methane was tested. Ni-based catalysts from La2NiO4 precursors were the most active and stable catalyst after calcination above 850 癈, which gave a methane conversion of 0.025 mmol/(g-s) for those prepared by the PC method and 0.020 mmol/(g-s) by the CC method. It was proposed that the well-defined structure and lower reducibility is responsible for the unusual catalytic behavior observed over the pre-reduced La2NiO4 catalyst.  相似文献   

13.
采用水热法合成了纳米棒状La(OH)3载体,通过湿式浸渍方法制备了10%Ni/La(Ⅲ)负载型催化剂,考察了500~800℃不同焙烧温度对于催化剂氢解山梨醇制备低碳二元醇的影响,结合XRD、SEM/EDS、BET、H2-TPR-MS、CO/CO2-TPD-MS、TG和ICP-AES等表征手段对Ni/La(Ⅲ)催化剂的构效关系进行了分析。结果表明,Ni/La(Ⅲ)催化剂表现出高的氢解反应活性,在较低的焙烧温度下(500℃)催化剂主要以NiO/La2O2CO3结构形式存在。随着焙烧温度的升高,NiO/La2O2CO3逐渐向La2NiO4-La2O3进行转变。碱性是影响不同催化剂活性的决定因素,高的焙烧温度促进了催化剂中强碱性位的生成,显著提高了氢解反应活性,但对液体产物的选择性无明显影响,在220℃、4MPa H2、1.5h的条件下,山梨醇完全转化,低碳二元醇的产率可达到53%。低的焙烧温度则增加了催化剂的水热稳定性。催化剂的失活主要归结于活性金属粒子在水相反应中从载体表面脱落而发生团聚,降低氢解反应活性。  相似文献   

14.
孙闻东  赵振波 《分子催化》2000,14(2):111-118
制备了以超细ZrO2为载体的WO3/ZrO2、SO4^2-/ZrO2、MoO3/Zr O2固体强酸催化剂,并用XRD、DTA-TG、H2-TPR、NH3-TPD等方法表征了其晶型结构、表面状态和酸性。结果表明,超细ZrO2中的T-晶相所占比例虽有所下降,但具有更大的比表面积、酸强度和对金属氧化物的负载能力,且酸强度随焙烧温度升高而增强,表明其表面状态亦有较大变化。研究了以超细ZrO2为载体的固体强酸催化  相似文献   

15.
制备方法对钒磷氧复合氧化物晶相和比表面积的影响   总被引:3,自引:0,他引:3  
曾翎  祝巨 《分子催化》2003,17(5):367-370
采用水相、有机相及球磨法等不同方法制备了VPO催化剂,使用BET、XRD等测试手段对VPO催化剂的比表面积、晶相结构进行了表征,研究发现水相法制备时,比表面积较小,晶相较复杂,焙烧温度升高,结晶度增加,有机相和球磨法制备时,催化剂的比表面积较大,晶相几乎为(VO)2P2O7,在超临界条件下干燥,可使所有催化剂比表面积显著增大,晶相更完善。  相似文献   

16.
负载型ZnO/SiO2及ZnO-SiO2溶胶凝胶催化剂的表面结构研究   总被引:2,自引:0,他引:2  
催化剂的表面结构不仅影响催化剂的催化活性, 而且还影响反应产物的选择性[1]. 制备催化剂的方法不同, 其表面结构及表面性质也不同[2~4]. 浸渍法简单实用, 有利于得到高分散、晶粒细小的高比表面催化剂, 而溶胶-凝胶法则由于其制备温度较低, 易于形成无定形的或介态的氧化物相[5]而可达到分子级的混合, 其活性组分能有效地嵌入网状结构中, 不易受外界的影响而聚集或长大, 因此对催化剂的稳定性更为有利[6,7].  相似文献   

17.
Fe_2O_3/SiO_2对异辛醇氧化生成异辛酸反应的催化性能研究   总被引:2,自引:0,他引:2  
采用浸渍法制备了系列的Fe_2O_3/SiO_2催化剂, 并用XRD, BET, TG-DTG和SEM等手段对催化剂进行了表征;考察了不同Fe负载量和焙烧温度的Fe_2O_3/SiO_2催化剂对异辛醇氧化生成异辛酸反应的催化活性的影响, 确定了最佳催化剂制备条件. 结果表明, Fe负载量为4%, 焙烧温度为500℃时, 催化剂活性组分Fe_2O_3的在载体上分散均匀, 晶粒大小基本一致, 催化剂比表面积较大, 催化剂活性达到最佳, 异辛酸选择性最高可达55.14%, 收率可达22.41%.  相似文献   

18.
本文采用等体积浸渍制备了掺杂不同金属助剂改性的Ni基催化剂,考察了其催化浆态床CO甲烷化的性能。通过XRD、H2-TPR、HR-TEM等表征对催化剂进行了分析,结果表明,掺杂Zr、Co、Ce、Zn、La助剂促进了Ni物种在载体表面的分散,减小了Ni的晶粒尺寸,降低了催化剂的还原温度;掺杂Mg助剂则导致催化剂的还原温度升高。浆态床活性评价结果表明,掺杂Zr、Co、Ce、Zn、La助剂提高了催化剂的甲烷化性能,其中以La助剂的效果最明显,通过对La负载量进一步优化后发现,当La负载量为8%时,催化剂的甲烷化催化性能最优,CO转化率、CH4选择性和时空收率分别达到96.3%、87.1%和179.6 g·kg-1·h-1;掺杂Mg助剂则降低了催化剂的甲烷化活性。  相似文献   

19.
 采用溶胶法制备了平均粒径为4.9 nm的RuO2溶胶,然后以镁铝尖晶石为载体,用一步沉淀法制备了嵌埋式纳米Ru基水煤气变换反应催化剂. 利用透射电子显微镜、扫描电子显微镜和粉末X射线衍射等技术对样品进行了表征. 结果表明, Ru纳米粒子均匀分散在载体内部,催化反应活性中心通过载体上形成的细微孔道与反应物接触. 向催化剂中添加适量的K2O和La2O3助剂可以有效地提高其催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号