首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
铜基催化剂上甲酸甲酯的分解和加氢动力学   总被引:1,自引:0,他引:1  
本文考察了常压,250℃下,Cu/ZnO/Al_2O_3催化剂上甲酸甲酯的分解和加氢反应动力学。分解产物甲醇、一氧化碳(包括二氧化碳)和氢的生成速率对甲酸甲酶的分压都近似为一级。加氢时,甲醇及一氧化碳的生成速率对甲酸甲酯的分压也为一级。甲酸甲酯的加氢比分解快得多,但二者平行发生。当接触时间τ趋近0时,甲酸甲酯分解产物中C_(CH_3OH)/C_(CO)趋近1.0。说明甲酸甲酯分解为H_2及CO 时甲醇为中间产物。对于甲醇分解为H_2及CO,当τ趋向0时2C_(HCOOCH_3)/C_(H_2)趋向约为0.1。说明甲醇大部分直接分解而并不以甲酸甲酯为中间产物。  相似文献   

2.
Ni-K/Al_2O_3系催化剂上甲醇分解的红外光谱研究   总被引:1,自引:0,他引:1  
用红外光谱技术研究了室温至300℃时甲醇在Ni-K/Al_2O_3系催化剂上分解形成的吸附态。在Ni/Al_2O_3上形成了物理吸附甲醇、表面甲氧基、吸附一氧化碳和表面甲酸盐。除此以外,在Ni-K/Al_2O_3上还形成了一个稳定的一氧化碳吸附构型及表面碳酸氢盐和=配位碳酸盐。各种表面生成物的稳定性和生成量与催化剂中1K含量及温度之间的关系密切。另外,讨论了甲醇分解时在Ni-K/Al_2O_3系催化剂表面上发生的反应,确认甲醇分解的中间反应产物是表面甲氧基。  相似文献   

3.
根据氧化亚氮在表面零价铜上分解放出氮的特征反应,建立了脉冲氧化亚氮-色谱法测定各种含铜催化剂活性表面积的方法。对商品氧化铜、实验室中碳酸钠分解硝酸铜所制成的活性氧化铜、Raney 铜、工业脱氧铜催化剂、一氧化碳加氢低压合成甲醇ICI-51型催化剂以及目前正在开发的合金铜-锌催化剂等均进行了活性铜表面积的测量。结果表明,上述催化剂的活性表面积仅占总表面积的一部分,甚至是极少的一部分。约为3—30%。将一系列合金铜锌催化剂的活性表面积数值与其在实验室中一氧化碳加氢合成甲醇的催化活性进行关联,发现甲醇时空收率与催化剂的活性夜面积成正比,亦即反应速度与活性表面积呈线性关系。通过对催化剂表面铜使氧化亚氮分解并吸附氧的本质的探讨,证实了一个氧原子吸附在两个相邻的表面铜原子上的设想,为含铜催化剂对一氧化碳加氢合成甲醇反应活性组分问题的探讨提供了有用的信息。  相似文献   

4.
以流动床微分反应器研究了Bi_2MO_3O_(12)-Bi_2O_3催化剂上的丙烯氧化动力学。丙烯和氧的分压范围分别为0.05—0.95atm和0.07—0.80atm。当氧和丙烯分压低于0.30atm时, 丙烯醛的生成速度对丙烯为一级对氧为0.5级。表观活化能为30.1 kcal mol~(-1)。当丙烯和氧分压高于0.30atm时, 丙烯醛生成反应的动力学不能用幂速度方程描述。丙烯醛的生成速度对丙烯和氧分压存在着极大值。热脱附实验表明, 在低于150 ℃时, 分子态丙烯可以吸附于氧化态催化剂。但当温度高于300 ℃时, 丙烯则不以分子态吸附, 且脱附物为丙烯醛、一氧化碳和二氧化碳。在广阔的温度区(25—500 ℃)氧皆不以分子态处于催化剂上。因此, 建议了以表面双位反应为速控步骤的氧化还原机理。  相似文献   

5.
铜系催化剂上甲醇蒸气转化制氢过程的原位红外研究   总被引:5,自引:0,他引:5  
 用原位红外光谱法跟踪研究了不同条件下铜系催化剂上甲醇蒸气转化制氢反应的初始开车过程.结果表明,反应过程中二氧化碳不是在一氧化碳之后产生的.可以推断,铜系催化剂上的甲醇蒸气转化制氢过程不是先进行甲醇分解为一氧化碳和氢气,然后一氧化碳和水蒸气发生变换反应生成二氧化碳和氢气.甲醇蒸气转化反应的主要过程是甲醇和水直接生成二氧化碳和氢气.  相似文献   

6.
本文得到了适应于一氧化碳加氢加压体系非线性动态分析不同吸附物种动力学参数的模型,并优化出工业铜锌催化剂上合成甲醇反应中可逆吸附氢和可逆吸附一氧化碳的吸附速率常数及吸附平衡常数。结果表明:铜锌催化剂上吸附可逆氢比吸附一氧化碳快7倍左右。由于铜锌催化剂上甲醇的生成是可逆吸附氢与可逆吸附一氧化碳共同作用的结果,且铜锌催化剂 可逆吸一氧化碳的表面浓度随气相一氧化碳分压的增加而增加,因而加压将有利于合成甲醇  相似文献   

7.
为了提高酚醛树脂的热稳定性,采用甲基三甲氧基硅烷(MTMS)对线性酚醛树脂(Novolac)进行改性,通过酯交换反应制得分子级硅氧烷改性线性酚醛树脂(SN),研究了催化剂种类、反应时间以及反应温度对SN分子量的影响,结果表明,最佳催化剂为冰醋酸,最佳反应时间为4~6h,最佳减压蒸馏温度为110℃。对SN结构的表征表明,Si—CH3和Si—O—CH3基团成功引入到Novolac的酚羟基上,且硅氧烷单体的一个甲氧基与Novolac的酚羟基发生的反应为主要反应。SN固化物的热稳定性结果表明,相比Novolac,在氮气气氛下,SN100固化物最大分解速率温度提高了80℃,最大分解速率降低了42.94%,1000℃的残碳率提高了8.97%,即是说硅氧烷的引入可显著提高Novolac的热稳定性。  相似文献   

8.
马力  王琪 《燃料化学学报》1989,17(2):133-138
本文用Cu(NO_3)_2和Ni(NO_3)_2制备了系列Cu-Ni双金属催化剂,并用于甲醇水蒸汽重整反应。以程序升温还原(TPR)技术对各种组成的混合氧化物体系进行了还原性能研究。结果表明,CuO-NiO混合体系均比纯CuO,NiO容易被还原。采用程序升温连续流动反应(TPCFR)技术对不同方法制备的各种组成的催化剂进行了评价。发现在最佳催化剂上甲醇水蒸汽重整反应分两段进行:300℃以前以甲醇分解为主,300℃以后开始发生水煤气变换反应。对TPCFR曲线进行分段解析并将结果与单独进行甲醇分解和水煤气变换反应所得结果进行了对比,结果表明:甲醇水蒸汽重整反应中甲醇分解和水煤气变换两段反应的表观活化能分别和单独进行甲醇分解、水煤气变换反应时求得的表观活化能是一致的。  相似文献   

9.
烯烃的羰化酯化反应均用纯一氧化碳为原料。由于分离和提纯一氧化碳的技术比较复杂,故本文探讨以合成气(CO H_2)为原料进行该反应的可能性。指出Pd—P系或Pd—Sn—P系络合物是活性较好的催化剂,而且,Pd—Sn—P系双金属催化剂对生成正构酯具有较高的选择性。  相似文献   

10.
Mn/ Re/Cu体系催化剂催化甲醇一步合成二甲氧基甲烷的研究   总被引:2,自引:1,他引:1  
以ReOx/CuO为催化剂,将甲醇选择性氧化一步合成二甲氧基甲烷(DMM)。考察了不同催化剂、反应温度以及Mn作为助剂对反应的影响。并利用XRD、程序升温脱附(NH3-TPD)和程序升温还原(H2-TPR)等手段对该催化剂进行了表征。结果表明,在一定的温度范围内,较高的反应温度有利于提高甲醇的转化率和DMM选择性;少量的Mn(2%)作为结构型助剂加入催化剂,通过改善催化剂表面分散度以及酸碱性,可以提高甲醇的转化率以及DMM的选择性;在非临氧条件下,催化剂表面的晶格氧可以参与反应,将甲醇氧化并最终得到DMM。  相似文献   

11.
甲醇在几种甲醇合成催化剂上的分解   总被引:1,自引:0,他引:1  
本工作考察了甲醇在Cu-Zn-Al、Zn-Cr和Pd/Al_2O_3催化剂上的分解反应。所用的条件范围是:LHSV~(?)0.3—3.Gh~(-1),温度230—100℃,压力0.5—8.0MPa。各催化剂在各自适宜的条件下都有很好的甲醇分解活性,但选择性差别较大。Cu-Zn-Al催化剂上的主要付产物是甲酸甲酯,其产量随温度和接触时间的增加而迅速下降,具有中间产物的特征。Pd/Al_2O_3明显地催化甲醇脱水,二甲醚选择性达30%以上。Zn-Cr催化剂于375℃使用时,在本工作所用的压力和空速范围内可保持99%左右的甲醇转化率,其中(H_2+CO)选择性80%以上,H_2/CO比接近2.0,付产一部分二甲醚。在三种催化剂上,CH_4及CO_2产量都很少,其顺序是Pd/Al_2O_3>Zn-Cr>Cu-Zn-Al。最后还将实验结果与用化学计最法计算的选择性作了对照验证。  相似文献   

12.
甲醇POSR制氢的反应网络热力学分析和有效因子的估算   总被引:1,自引:3,他引:1  
在Cu/ZnO/Al2O3催化剂上对甲醇部分氧化蒸汽重整制备氢气反应的动力学过程进行了研究。在常压和473 K~1 073 K温度范围内对该反应网络中的甲醇部分氧化、甲醇蒸汽重整、甲醇分解和水煤气反应的化学平衡进行了分析。在对这些反应的催化剂Cu/ZnO/Al2O3动力学研究的基础上,根据有效因子的基本概念,考虑催化剂颗粒内的扩散限制,对每个反应沿反应器床层的有效因子进行了估算。  相似文献   

13.
主链光学活性1-庚烯-一氧化碳共聚物合成与表征   总被引:1,自引:0,他引:1  
在阳离子钯 配体催化剂的存在下 ,烯烃与一氧化碳 (CO)交替共聚形成聚酮 ,这是一类非常有用的新材料 ,引起了广泛的关注[1] .合成聚酮有两种引发方式 :自由基引发共聚和过渡金属引发共聚 .在高的温度和压力下 ,用两种方式都可以得到聚酮 ,但其中的一氧化碳含量却随一氧化碳的分压变化[2 ] .随后发现了中性膦 钯催化剂[3 ] ,可在较温和的条件下实施一氧化碳与丙烯的交替共聚 ,且其一氧化碳含量不随一氧化碳分压变化 .高效催化剂主要有三部分组成 ,阳离子钯、弱或非配位的阴离子[4 ] 以及二齿膦或二氮配体[5] .一氧化碳插入过渡金属 碳σ 键…  相似文献   

14.
在10毫升催化床的小型装置上进行了丁烯转化动力学的初步考察,以期求出丁烯在L-2605型催化剂上氧化脱氢总包反应的似活化能与反应速度方程. 在排除线速度干扰的情况下,考察了催化剂粒度(粒度平均半径为0.025—0.16厘米)对丁烯氧化盼氢反应中丁烯转化速度的影响.在排除外扩散与内扩散干扰的条件下,进行了反应温度(350—530℃)及各反应物分压(丁烯、丁二烯、氧及水蒸气)对丁烯转化速度的影响的考察.求得丁烯在L-2605型催化剂上氧化脱氢的总包反应似活化能为20.7千卡/克分子.在试验的反应温度范围内,丁烯氧化脱氢中丁烯转化速度方程可表示如r=kp_u,式中r为丁烯转化速度,克分子/小时·克催化剂;k为速度常数,克分子/小时·克催化剂·大气压;p_u为丁烯分压,大气压.  相似文献   

15.
甲苯气相催化氧化合成苯甲醛的动力学   总被引:2,自引:0,他引:2  
应用振动式内循环反应器进行了在V-H-3型催化剂上甲苯气相催化氧化合成苯甲醛的动力学研究。在350—400℃,甲苯分压为0.08—0.26大气压,氧分压为0.1—0.26大气压的范围内,该反应可用一个平行一连串反应历程来表示。各步反应均可用对于甲苯或苯甲醛为一级,对氧为半级反应来关联。建立了该反应系统的动力学模型,并将该模型计算值与100毫升催化剂单管试验结果进行了比较。  相似文献   

16.
研究了以PdCl2-CuCl2-PPh3为催化剂体系,甲基乙基酮、乙二醇二甲醚为溶剂,苯乙烯与一氧化碳及甲醇立体选择生成2-苯基丙酸甲酯的反应.对不同的催化剂前体催化烯烃氢酯基化反应进行了研究,得知CuCl2在此催化反应中起着立体控制作用.同时考察了影响反应的各种因素如溶剂、反应温度、反应压力、不同的膦配体等.实验结果表明,该反应的最佳条件是:反应温度80℃,反应压力4.0—6.0MPa,反应时间24h,最好的溶剂是乙二醇二甲醚及甲基乙基酮.利用该催化剂体系对不同结构的烯烃催化反应进行了研究,发现该体系仅仅对苯乙烯类有较高的立体选择催化活性  相似文献   

17.
本文在常压下用直流管式等温积分反应器研究了C301型铜基催化剂上CO-H_2-CH_3OH 系统中甲醇分解反应本征动力学。在不同温度和组成的情况下测定了甲醇分解的速率。用非线性最小二乘法对幂函数型甲醇分解反应本征动力学模型进行了参数估值,得到甲醇分解的动力学方程为:R_m=-(dN_m)/(dW)m=0.3202×10~(10)exp(-(26610)/(R_gT))p_(H_2)~(-0.25)p_(CO)~(-0.25)p_m~(0.5)mol/(g·hr)由甲醇分解反应的活化能求得合成反应的活化能为14990 cal/mol。  相似文献   

18.
钯-稀土催化一氧化碳和苯乙烯交替共聚反应   总被引:1,自引:0,他引:1  
 利用稀土钇盐或钕盐和乙酸钯组成的催化体系催化一氧化碳和苯乙烯共聚,合成了聚(1-氧代-2-苯基丙撑). 用元素分析、红外光谱、示差扫描量热、热重分析及X射线光电子能谱(XPS)等方法对共聚产物进行了表征. 测试结果表明,共聚物为一氧化碳和苯乙烯的线性交替共聚产物,其玻璃化温度为235 ℃,熔点为250 ℃,分解温度为325 ℃,且用XPS未检测到聚合物中含有残留的金属. 同时考察了催化剂组分2,2′-联吡啶、对甲苯磺酸和对苯醌及溶剂甲醇等的用量对共聚反应的影响,并对聚合反应条件进行了优化. 在优化的反应条件下稀土与钯组成的复合催化剂对一氧化碳和苯乙烯交替共聚的催化活性可达1200 g/(g·h).  相似文献   

19.
研究了Ni/聚合物衍生碳(Ni/PDC)催化甲醇气相羰基化过程的动力学行为.Langmuir-Hinshelwood反应机制用于建立动力学数学模型,在此模型基础上导出反应速率的表达式以及反应速率与碘甲烷、一氧化碳和甲醇等反应物分压之间的数学关系.这些关系得到了实验数据的证实.反应速率对反应温度的依赖性以Arrhenius曲线给出,升高反应温度会导致反应控制机制从动力学控制模式转化为扩散控制模式,同时反应的有效速率表达式和表观活化能都有相应的变化.  相似文献   

20.
制备了三缺位Keggin型反应控制相转移催化剂[C7H7(CH3)3N]9PW9O34(记为Q9PW9),利用FT-IR、31P NMR、XRD和TG对催化剂进行了表征,并确定了反应的催化活性中心。 分析结果表明,催化剂Q9PW9在反应后其结构仍然得到了很好的保持,反应中形成的[C7H7(CH3)3N]9PW9O34 (O2)x活性中心使催化剂具有反应控制相转移功能。以H2O2水溶液为氧化剂,在氧化苯甲醇制备苯甲醛反应中,发现该催化剂具有良好的催化活性。当H2O2与苯甲醇的物质的量比为0.9时,苯甲醇的转化率为86.2%,苯甲醛的选择性≥99%。反应结束后催化剂以沉淀的形式析出,催化剂的回收率保持在86%左右。将催化剂循环使用三次,苯甲醇的转化率和催化剂的回收率均无明显变化,说明Q9PW9具有良好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号