首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
采用静电纺丝设备制备尼龙6纳米纤维膜。用静、动态吸附方法,研究了尼龙6纳米纤维膜对己烷雌酚的吸附性能,考察了吸附时间、初始浓度及介质p H值对尼龙6纳米纤维膜吸附己烷雌酚的影响。结果表明,初始浓度为2mg/L时,尼龙6纳米纤维膜吸附己烷雌酚的过程符合准一级动力学模型;当初始浓度在5~20mg/L范围内,吸附过程符合准二级动力学模型。尼龙6纳米纤维膜吸附己烷雌酚的过程符合Freundlich等温吸附模型。  相似文献   

2.
采用静电纺丝法制备出PA6纳米纤维膜,运用水热晶化法制备水滑石(LDH)的同时加入PA6纳米纤维膜成功制备出PA6@LDH纳米纤维膜.通过红外光谱(FTIR)、能谱(EDX)、扫描电子显微镜(SEM)、X-射线衍射(XRD)等测试方法对PA6纳米纤维膜、PA6@LDH纳米纤维膜进行了表征,并通过电感耦合等离子体测试(ICP-AES)对PA6@LDH纳米纤维膜的最佳除铬效果进行了探究,结果表明,当水热晶化温度在80℃时,纳米级的LDH生成并在PA6纳米纤维表面成功负载;再用所制备的PA6@LDH纳米纤维膜进行除铬实验,得到最佳除铬效果为当Mg/Al摩尔比为3∶1,吸附时间6天,铬溶液p H为2时达到最大除铬吸附量242mg/g,并且吸附过程满足准二级动力学方程,吸附形式为Langmuir单层吸附,符合Langmuir吸附模型;通过Na OH解吸附后,循环使用4次后效率依然保持在50%以上.  相似文献   

3.
采用可逆加成断裂链转移可控/活性聚合方法合成了丙烯腈与N-异丙基丙烯酰胺(NIPAM)的嵌段共聚物,通过调控嵌段聚合反应时间可以获得一系列不同嵌段链长的共聚物,分子量分布在1.3左右.运用静电纺丝技术制备了所合成嵌段共聚物的纳米纤维膜,扫描电镜照片表明纳米纤维膜较为均匀且直径可调.研究了纳米纤维膜表面水接触角与荧光标记牛血清清蛋白的吸附现象,接触角结果证实共聚物纳米纤维膜具有一定的温度响应性,且疏水性嵌段的引入导致响应温度较PNIPAM有所降低;蛋白质吸附结果则表明温度较低时纳米纤维膜表面更亲水,蛋白质吸附较少.所制备的温敏性纳米纤维膜可望用作智能分离与吸附材料.  相似文献   

4.
聚丙烯中空纤维膜经多巴胺氧化、硅烷化两步表面改性处理后,以甲基丙烯酸为功能单体进行表面分子印迹聚合,制备了中空纤维膜支撑-二苯并噻吩分子印迹复合膜(MIP-PP膜)。利用红外光谱、扫描电镜对印迹复合膜形态结构进行表征,测定了MIP-PP膜的脱硫性能。结果表明,在298 K时,MIP-PP膜对DBT的吸附在180 min达到平衡,最大吸附容量为133.32 mg/g;MIP-PP膜对DBT的吸附符合Lagergren准一级动力学模型及Langmuir吸附等温线,是可自发进行的放热过程。  相似文献   

5.
以聚羟基丁酸酯和碳纳米管为原料,采用三氯甲烷/二甲基甲酰胺混合溶液为溶剂,利用静电纺丝技术制备了聚羟基丁酸酯/碳纳米管复合纳米纤维膜.研究了碳纳米管的含量对纳米纤维膜形貌和力学性能的影响,探讨了复合纳米纤维膜对重金属Cu(II)、Cd(II)和Pb(II)的吸附特性.实验结果表明:加入1 wt%碳纳米管能够将纳米纤维的平均直径从(728±146)nm降低至(468±89)nm,纳米纤维膜的比表面积从27.24 m~2/g提高至43.45 m~2/g;碳纳米管的复合能够有效增强聚羟基丁酸酯纳米纤维,当碳纳米管含量1 wt%为最佳,拉伸强度可达5.85 MPa,较纯聚羟基丁酸酯纳米纤维提升了115%.复合纳米纤维膜对重金属离子具有良好的吸附特性,其对Cu(II)、Cd(II)和Pb(II)的最佳吸附pH值为5,此时最大吸附容量分别为91.04、171.05和197.03mg/g,平衡吸附时间分别约为50、60和60 min,吸附率分别为1.79、2.83和3.28 mg/g/min;热力学和动力学分析表明,复合纳米纤维膜对重金属Cu(II)、Cd(II)和Pb(II)的吸附行为更符合Freundlich模型,吸附过程更符合Pseudo-second order模型;循环使用实验表明,重复使用5次后,其吸附容量可保持在初始值的87%以上,具有较好的使用寿命.  相似文献   

6.
通过高压静电纺丝技术制备了聚乙烯醇/聚乙烯亚胺(PVA/PEI)纳米纤维膜, 对纤维膜进行功能化使其转化为对重金属离子具有高络合能力的聚乙烯醇/二硫代氨基甲酸盐功能化聚乙烯亚胺(PVA/DTC)纳米纤维膜. 研究了PVA/PEI纳米纤维膜的交联和功能化以及PVA/DTC纤维膜对铅离子的吸附行为. 结果表明, 高压静电纺丝法可制备出纤维直径分布均匀、 形貌良好的纳米纤维膜, 且交联、 功能化后仍能保持蓬松纳米纤维状的网状结构. PVA/DTC纳米纤维膜对铅离子吸附速率快, 吸附量容量高, 且具有良好的再生吸附能力, 是一种潜在的重金属离子高效吸附材料.  相似文献   

7.
利用静电纺丝技术制备了一种具有抗菌性能的氧化锌(ZnO)/聚乳酸(PLA)/聚己内酯(PCL)载药微纳米纤维膜,并通过扫描电子显微镜(SEM)、X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)分别对复合膜的表面形态、元素组成和化学结构进行表征。通过抗菌实验评价了复合膜的抗菌性能,用紫外分光光度计测试复合膜在体外的药物释放行为。结果显示,以物理共混的方式将ZnO和氢溴酸高乌甲素(LAH)成功载入复合微纳米纤维;与PLA/PCL复合微纳米纤维膜相比,ZnO/PLA/PCL复合微纳米纤维膜表现出更好的抗菌效率。当ZnO含量为10%(wt)时,复合微纳米纤维膜具有最佳的抗菌性能;药物释放性能结果表明,ZnO/PLA/PCL复合微纳米纤维膜具有良好的药物缓释性能。  相似文献   

8.
将静电纺丝法制备的聚丙烯腈(PAN)纳米纤维膜用不同比例的盐酸羟胺和水合肼混合溶液改性,再与Fe3+离子进行配位反应,制备了5种不同表面结构的改性PAN纳米纤维铁配合物;考察了水合肼加入量对纤维铁配合物的制备及对偶氮染料活性红195去除能力的影响.结果表明,随着水合肼加入量的增大,改性PAN纳米纤维的直径减小且其铁配合物表面的铁离子配合量降低;3种混合改性PAN纳米纤维铁配合物均对活性红195具有优良的吸附和光催化降解功能,可通过2种功能之间的协同效应实现快速去除水溶液中染料分子的目的.  相似文献   

9.
丁二酸酐接枝纤维素纳米纤维膜及其重金属离子吸附   总被引:1,自引:0,他引:1  
采用热致相分离(TIPS)法以三醋酸纤维素(TCA)为原料成功制备直径为(110±28)nm TCA多孔纳米纤维膜。将TCA纤维膜通过水解转化为纤维素(Cell)、接枝制备丁二酸酐接枝改性纤维素(Cell-g-SAA)膜。将Cell膜和Cell-g-SAA膜用于吸附水中Cu~(2+)、Pb~(2+),并对膜样品的吸附动力学、等温吸附和吸附热力学进行了研究。结果表明,二级动力学拟合和Langmuir模型更适合于该体系。与Cell膜相比,改性后Cell-g-SAA膜对Cu~(2+)和Pb~(2+)的最大吸附容量分别从51.73和34.29 mg/g增加到116.41和51.73 mg/g。纤维膜对Cu~(2+)、Pb~(2+)的吸附更趋近于单层吸附且化学吸附占主导地位。  相似文献   

10.
采用静电纺丝法制备聚丙烯腈(PAN)纳米纤维膜,再以盐酸羟胺为改性剂对PAN纳米纤维膜进行偕胺肟化处理成功制备出偕胺肟化纳米纤维膜(AOPAN).通过扫描电子显微镜(SEM)、红外光谱(FTIR)、水接触角等对其物理化学性质进行表征并研究其吸附重金属Cr(Ⅵ)的能力.结果表明,PAN纳米纤维在水浴温度60℃,水热时间3.5 h条件下进行改性后,纤维直径明显变粗,并且有一定程度的弯曲.由红外光谱(FTIR)分析发现改性后的PAN纳米纤维膜在3500~3300 cm~(-1)范围内出现了2个双峰,并且接触角由114.5°变为29.8°,说明成功地将PAN纳米纤维改性为含有—NH_2基团的AOPAN纳米纤维.该AOPAN纳米纤维膜对铬的吸附实验表明,在p H=2时,吸附约5 h后达到最佳除铬效果,吸附量可达102.5 mg/g,并且满足准一级动力学方程,符合Langmuir吸附模型.主要是由于制备的AOPAN含有—NH_2基团,在酸性条件下被质子化为—NH_3~+,更易与HCr O_4~-结合.而且这种膜材料在使用后便于取出,经稀Na OH溶液洗涤后,能够重复使用,循环4次后仍能保持50%以上的去除率,在处理重金属离子方面具有非常大的潜力.  相似文献   

11.
采用硬脂酸对β-磷酸三钙(β-TCP)进行表面改性,并研究了β-TCP与硬脂酸的界面作用,通过透射电子显微镜(TEM)、热重分析仪(TGA)以及X光电子能谱(XPS)对改性前后β-TCP的形貌、热失重和表面基团进行表征;采用静电纺丝法制备不同质量配比的β-TCP/PLLA和改性β-TCP/PLLA复合纳米纤维膜,用扫描电镜(SEM)观察复合膜的形貌,并研究其力学性能。结果表明,硬脂酸包覆在β-TCP表面,改性后的β-TCP具有一定疏水性,硬脂酸的H+可与β-TCP中PO3-4的1个O发生质子化反应形成—OH;硬脂酸改性减轻了β-TCP微粒的团聚,可以得到连续均匀的纤维,改性后的β-TCP/PLLA复合纳米纤维膜的力学性能较改性前有明显提高。  相似文献   

12.
利用静电纺丝技术在无纺布上制备PET纳米纤维膜, 并用交联壳聚糖对其进行改性得到壳聚糖改性纳米纤维复合膜. 以间苯二胺(MPD)和均苯三甲酰氯(TMC)为单体, 采用界面聚合法在壳聚糖改性纳米纤维复合膜的表面制备聚酰胺分离层, 得到新型静电纺丝纳米纤维基复合反渗透膜. 新型复合反渗透膜具有典型的聚酰胺复合反渗透膜的表面脊-谷结构. 从膜的表面形貌、 亲水性、 分离性能等3个方面对水相MPD溶液中阴离子表面活性剂十二烷基苯磺酸钠(SDBS)的含量对膜结构和性能的影响进行了系统研究. 结果表明, SDBS的含量对膜形态结构的均匀性和亲水性有一定影响, 且随着SDBS含量的增加, 膜的脱盐率先增大后减小, 而通量小幅度上升后, 先减小后增大, 呈现规律性变化.  相似文献   

13.
采用静电纺丝法制备聚丙烯腈(PAN)纳米纤维膜,再以乙二胺为改性剂对PAN纳米纤维膜进行化学处理,制备出具有氨基的改性PAN纳米纤维膜(PAEA).通过扫描电镜(SEM)、红外光谱(FTIR)、水接触角等对其物理化学性质进行表征并研究其对重金属离子Cr(VI)的吸附能力.结果表明:PAN在水浴温度95°C,水热时间2 h条件下改性后,纤维直径明显变粗且有一定的弯曲.由FTIR分析发现改性后的PAN在3050~3300 cm-1范围内出现了特征峰,并且水接触角减小为44.7°,说明成功地将PAN纳米纤维膜改性为含有亲水性―NH2基团的PAEA纳米纤维膜.除铬实验表明:在pH=2时,吸附约10 h后达到最佳除铬效果,吸附量可达175.94 mg/g.这种膜材料在使用后经稀NaOH溶液洗涤后,能够重复使用,循环4次后仍能保持70%左右的去除率,在处理重金属离子方面具有非常大的潜力.  相似文献   

14.
采用双喷头电纺丝技术,将尼龙(PA-66)纤维增强的聚丙烯腈(PAN)纳米纤维膜(PAN/PA-66)与盐酸羟胺进行偕胺肟化反应,制备了一种偕胺肟化聚丙烯腈/尼龙复合纳米纤维膜(AOPAN/PA-66).通过红外光谱及扫描电子显微镜等方法研究了偕胺肟化前后纳米纤维膜的组成、形貌和力学性能;并考察了AOPAN/PA-66复合纳米纤维膜对铜离子和铅离子的吸附性能.结果表明,AOPAN/PA-66复合纳米纤维膜的抗拉伸强度及断裂伸长率分别为4.73 MPa和30.76%,对Cu(Ⅱ)及Pb(Ⅱ)的吸附量分别为67.5和75.4 mg/g.  相似文献   

15.
采用静电纺丝技术和化学镀方法相结合的方法,用聚丙烯腈(PAN)纳米纤维作为载体,以绿色环保的胺化改性替代化学镀传统的敏化、活化前处理,再化学镀银制备胺化聚丙烯腈纳米纤维载银复合膜(Ag/APAN).SEM、XPS、XRD、FTIR等结果表明,银离子能够吸附在经胺化处理后的PAN纳米纤维表面,且能够在纤维表面生成少量单质银;单质银作为催化活性中心,有效地促进化学镀银的进行,在PAN纳米纤维表面生成均匀致密的银纳米粒子层,制备出了以PAN纳米纤维为核,银层为壳的核壳结构复合膜.银纳米粒子附着在纳米纤维表面,可以使银纳米粒子的催化性能得到充分发挥.通过对催化邻-硝基苯胺与硼氢化钠之间氧化还原反应的研究表明,所制备的Ag/APAN纳米纤维复合膜具有很好的催化效果,且不会造成反应体系的二次污染.  相似文献   

16.
以改性香蕉叶作为吸附材料吸附溶液中的Ca~(2+),研究了Na OH浓度和反应时间对香蕉叶改性效果的影响,并研究了吸附时间、温度、吸附剂用量、Ca~(2+)初始质量浓度、溶液p H值对改性香蕉叶吸附性能的影响,包括吸附平衡和吸附动力学过程。结果发现,改性香蕉叶吸附剂的最佳制备方案为:Na OH浓度为0.2mol/L,反应时间为1h;改性香蕉叶吸附剂对Ca~(2+)的吸附平衡较好地符合Langmuir吸附等温式,其吸附动力学符合准二级动力学模型,由此确定其吸附类型为化学吸附;通过红外光谱分析和扫描电镜显示,改性的过程可除去香蕉叶纤维表面的果胶、半纤维素、木质素,使Ca~(2+)更容易接触纤维表面而被吸附。  相似文献   

17.
黄先威  邓继勇  许律  沈平  赵斌  谭松庭 《化学学报》2012,70(15):1604-1610
利用静电纺丝技术,制备了不同的聚合物/TiO2杂化纳米纤维微孔膜,吸附液体电解质后形成聚合物/TiO2杂化纳米纤维微孔膜准固态电解质,应用于制备准固态染料敏化太阳能电池(DSSCs).测试了电纺聚合物纳米纤维微孔膜电解质的吸液率、孔隙率、离子电导率等参数,研究了纳米纤维微孔膜准固态电解质DSSCs的光伏性能.结果显示,TiO2的掺入可提高聚合物/TiO2杂化纳米纤维微孔膜对液态电解质的浸润扩散性能,从而提高纳米纤维微孔膜对液态电解质的吸附能力.组装的DSSCs的光电转换效率可达液态电解质的90%以上,并具有较好的长期工作稳定性.  相似文献   

18.
庞月红  李朝霞  沈晓芳  钱和 《化学通报》2012,(11):1040-1043
通过静电纺丝技术制备了聚苯乙烯/石墨烯复合纳米纤维膜,利用扫描电子显微镜、傅里叶变换红外光谱、粉末X-射线衍射和激光拉曼光谱等技术对所制备的纤维膜结构和组成进行表征,并通过电化学法考察该复合纳米纤维膜的电活性。结果表明,石墨烯已掺杂到聚苯乙烯纤维中。与聚苯乙烯纤维膜相比,聚苯乙烯/石墨烯复合纳米纤维膜导电性能增强,表明本实验成功实现了对聚苯乙烯纤维的改性。  相似文献   

19.
通过静电喷雾沸石咪唑框架-8(ZIF-8)分散液对同步电纺聚乳酸(PLA)纳米纤维进行表面功能化,以增强PLA/ZIF-8纳米纤维膜(简称纳纤膜)表面的电荷俘获及储存能力,从而提高静电吸附效果和过滤性能.通过在分散液中添加不同量的ZIF-8来调控锚定于纤维表面的ZIF-8负载量,探究ZIF-8含量与纤维膜形态和性能演变之间关系.采用扫描电子显微镜(SEM)对纤维膜的微观形态进行表征,并结合傅里叶变换红外光谱(FTIR)和X射线衍射谱(XRD)分析了纤维膜的化学性质、界面相互作用和晶体结构的演变机理.采用静电测试仪、电介质测试仪和静电计分别评价表面电势、相对介电常数和输出电压,表征纤维膜的电活性和摩擦电输出性能.通过万能试验机测试聚乳酸纳米纤维膜的力学性能,并使用自主搭建的空气过滤测试平台探究纤维膜高效过滤机理.结果表明,PLA/ZIF-8纳纤膜具有高电活性、高过滤效率、低空气阻力和优异的力学性能:其表面电势和最大开路输出电压分别可达5.9 kV和30.9 V,与纯PLA对比样相比分别提升5.6倍和5.3倍,同时拉伸强度和拉伸韧性增幅分别高达78%和111%.更重要的是,PLA/ZIF-...  相似文献   

20.
静电纺丝法制备PLLA/g-HNTs复合纳米纤维膜及其性能研究   总被引:1,自引:0,他引:1  
以辛酸亚锡为催化剂,利用HNTs表面的羟基引发L-LA开环聚合,合成了表面接枝聚(L-乳酸)(PLLA)链段的埃洛石纳米管(g-HNTs),通过红外、热失重和透射电镜对改性前后HNTs的组成与形貌进行了观察;然后采用静电纺丝技术制备了PLLA纳米纤维膜以及不同组成的PLLA/HNTs和PLLA/g-HNTs复合纳米纤维膜,探讨了纺丝条件对纳米纤维膜形貌的影响,并对复合膜的组成、形貌、力学性能和细胞相容性进行了研究.结果表明,当HNTs与L-LA的摩尔投料比为1∶10时,g-HNTs表面PLLA链段的接枝率为14.22%,HNTs纳米管的形态在接枝后变化不大,易于在无水乙醇中分散.电压强度和进样速率对纤维膜的形貌有一定影响,当电压强度为15 kV、进样速率为1 mL/h时,电纺纤维的直径较为均匀.复合纤维膜中g-HNTs在基体PLLA中的分散性以及与基体的界面相容性要优于相应的HNTs,当g-HNTs含量高达40%时,复合纳米纤维膜中的纤维形态仍然保持较好,可以得到连续、粗细较均匀的纤维;随着HNTs和g-HNTs含量增加,复合纳米纤维膜的拉伸强度和模量先增大后下降,当HNTs和g-HNTs的含量为5%时,两种复合纳米纤维膜的拉伸强度和模量均达到最大值,但PLLA/g-HNTs组复合纳米纤维膜的拉伸强度始终大于相应的PLLA/HNTs组.体外3T3细胞培养结果显示,PLLA/g-HNTs复合纳米纤维膜具有良好的细胞相容性,且优于相应的PLLA和PLLA/HNTs纳米纤维膜.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号