首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
齐斌  晁余涛 《化学学报》2007,65(19):2117-2123
在6-311+G(2d,2p)水平下, 采用密度泛函理论(DFT)的B3LYP方法, 研究了Criegee 自由基CH2O2与H2O的反应. 结果表明反应存在三个通道: CH2O2+H2O®HOCH2OOH (R1); CH2O2+H2O®HCO+OH+H2O (R2); CH2O2+H2O®HCHO+H2O2 (R3), 各通道的势垒高度分别为43.35, 85.30和125.85 kJ/mol. 298 K下主反应通道(R1)的经典过渡态理论(TST)与变分过渡态理论(CVT)的速率常数kTSTkCVT均为2.47×10-17 cm3•molecule-1•s-1, 而经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT 5.22×10-17 cm3•molecule-1•s-1. 另外, 还给出了200~2000 K 温度范围内拟合得到的速率常数随温度变化的三参数Arrhenius方程.  相似文献   

2.
赵岷  刘朋军  常鹰飞  孙昊  苏忠民  王荣顺 《化学学报》2005,63(11):1013-1017
在QCISD(T)/6-311+G(d,p)//B3LYP/6-311+G(3df,3pd)水平上, 对CH3O与ClO双自由基反应进行了理论研究. 结果表明, 该反应共有三个反应通道, 产物分别为HOCl+CH2O, CH2O2+HCl和CH3Cl+O2(1Δ). 不论从动力学角度, 还是从热力学角度看, 形成产物HOCl+CH2O的通道均是最有利的, 因此为主要反应通道, 这与实验观察到的结果是一致的.  相似文献   

3.
通过水热合成得到一个新的有机二膦酸亚铁化合物[NH3(CH2)5NH3][Fe2{O3PC(CH3)(OH)(PO3H)}2]·2H2O,该化合物包含阴离子型共价双链[Fe2{O3PC(CH相似文献   

4.
李晓艳  孙政  孟令鹏  郑世钧 《化学学报》2007,65(20):2203-2210
利用量子化学从头算CASSCF方法在6-311+G (d, p)基组水平上对单线态和三线态RN (R=CH3, CH3CH2)异构化反应及RN脱氢反应的微观机理进行了理论研究. 在MP2/6-311+G (d, p)和CCSD/6-311+G (d, p)水平上进行了单点能校正. 单态和三态势能面的交叉点(ISC)的存在清楚地说明了基态反应物3RN异构化为基态产物1R'NH (R'=CH2, CH3CH)的过程. 电子密度拓扑分析显示在整个异构化过程中有两种类型的结构过渡态: 单态反应通道为T型过渡态, 三态反应通道为环状过渡态. 单线态RN脱氢反应通道中“原子-分子键”的存在说明两个H原子是以H2的形式从RN中脱去的.  相似文献   

5.
A super-molecular complex, [Na(DB18C6)(CH3CN)]2W6O19·(CH3CN)2, was obtained by solvothermal reaction and characterized by IR , 1H NMR, gumbc spectrum single crystal and X-ray diffraction. The compou- nd crystallizes in monoclinic space group P21/c with a=1.185 22(4) nm, b=2.091 51(8) nm, c=1.487 19(5) nm, β=117.467(2)° and Z=2. The complex contains four basic units: Na+, CH3CN, DB18C6 and W6O192-. Sodium ions located in the cavity of dibenzo-18-crown-6 with 6 Na-O bonds and the crown ether-sodium ion complex is supported on the terminal oxygen atoms of the typical Lindqvist isopolyanion W6O192- via the coordinative interactions. W6O192- located between two DB18C6 and led to the formation of the “hamburger” structure. Two isolated CH3CN are included in the complex. The whole title crystal is stabilized by van der waals force. CCDC: 292369.  相似文献   

6.
Reaction of the trivacant heteropolyanions α-A-PW9O349- with CH3SiCl3 leads to the formation of the organosilyl derivative (TBA)3[α-A-PW9O34(CH3SiO)3(CH3Si)]. The crystal X-ray diffraction analysis shows that the crystal belongs to orthorhombic with space group Pca21, M=3177.09 and the unit cell parameters: a=25.761(5)?,b=14.519(3)?,c=24.396(5)?.V=9124(3)?3,Z=4,Dc=2.225g·cm-3,μ(MoKα)=11.438mm-1,F(000)=5464,R=0.0561,Rw=0.0866. The anion consists of one α-A-PW9O349- anion linked by three CH3SiO+ groups, which attached to the fourth CH3Si through three Si-O-Si bridges.  相似文献   

7.
通过溶胶和超临界干燥方法制得了Fe2O3/Al2O3二元气凝胶,其比表面积和孔隙体积分别为246 m2·g-1和1.89 cm3·g-1,并具有较宽的孔径分布。以Fe2O3/Al2O3二元气凝胶作催化剂,通过甲烷催化裂解成功地合成了高质量的单壁纳米碳管。利用FESEM、TEM和HRTEM、Raman光谱等分析手段研究了反应温度对单壁纳米碳管生长的影响。结果表明在900 ℃时合成单壁纳米碳管的质量较高,并且合成的炭产物为毡状,该炭产物主要为高质量的单壁纳米碳管。  相似文献   

8.
研究了复合物Mg-NCSCH3在230~440 nm波段和Ca-NCSCH3在320~560 nm波段的光解离光谱. 复合物Mg-NCSCH3, Ca-NCSCH3光诱导反应的产物质谱表明有非反应猝灭产物Mg(Ca), C—S键断裂产物Mg(Ca)NC 和Mg(Ca)NCS以及重排反应产物Mg(Ca)-CHSH通道. 在原子跃迁谱线(32S→32P, 对于Mg; 42S?42P, 对于Ca)的红和蓝两边, Mg-NCSCH3的光解离光谱由两个宽峰组成; 而对于Ca-NCSCH3, 则是由三个谱峰构成. CIS/6-311++G**等级上, 对应于基态构型的Mg-NCSCH3电子态跃迁能量和振子强度与实验光谱较为一致; 而Ca-NCSCH3有较大的差别. 这是因为CIS方法忽略电子相关效应, 而Ca-based的跃迁中3d和4s轨道间存在较强的混合所致.  相似文献   

9.
研究了复合物Mg-NCSCH3在230~440 nm波段和Ca-NCSCH3在320~560 nm波段的光解离光谱. 复合物Mg-NCSCH3, Ca-NCSCH3光诱导反应的产物质谱表明有非反应猝灭产物Mg(Ca), C—S键断裂产物Mg(Ca)NC 和Mg(Ca)NCS以及重排反应产物Mg(Ca)-CHSH通道. 在原子跃迁谱线(32S→32P, 对于Mg; 42S?42P, 对于Ca)的红和蓝两边, Mg-NCSCH3的光解离光谱由两个宽峰组成; 而对于Ca-NCSCH3, 则是由三个谱峰构成. CIS/6-311++G**等级上, 对应于基态构型的Mg-NCSCH3电子态跃迁能量和振子强度与实验光谱较为一致; 而Ca-NCSCH3有较大的差别. 这是因为CIS方法忽略电子相关效应, 而Ca-based的跃迁中3d和4s轨道间存在较强的混合所致.  相似文献   

10.
采用同轴静电纺丝技术, 以氧化钇、氧化铕、正硅酸乙酯(C8H20O4Si)、无水乙醇、PVP和DMF为原料, 成功制备出大量的Y2O3:Eu3+@SiO2豆角状纳米电缆. 用TG-DTA, XRD, SEM, TEM和荧光光谱等分析技术对样品进行了系统地表征. 结果表明, 得到的产物为Y2O3:Eu3+@SiO2豆角状纳米电缆, 以无定型SiO2为壳层, 晶态Y2O3:Eu3+球为芯, 电缆直径约为200 nm, 内部球平均直径约150 nm, 壳层厚度约为25 nm, 电缆长度>300 μm. 纳米电缆内部为球状结构, 沿着纤维长度方向有序排列, 形貌均一. Y2O3:Eu3+@SiO2豆角状纳米电缆在246 nm紫外光激发下, 发射出Eu3+离子特征的波长为614 nm的明亮红光. 对其形成机理进行了初步讨论.  相似文献   

11.
Complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with an ANO-RCC basis were performed for the 1(2)A', 1(2)A", 2(2)A', and 2(2)A" states of the CH3Br+ ion. The 1(2)A' state is predicted to be the ground state. The 2(2)A' state is predicted to be a bound state. The adiabatic and vertical excitation energies and the relative energies at the molecular geometry were calculated, and the energetic results for 2(2)A' and 2(2)A" are in reasonable agreement with the experimental data. Potential energy curves (PECs) for Br-loss and H-loss dissociations from the four C(s) states were calculated at the CASPT2//CASSCF level and the electronic states of the CH3(+) and CH2Br(+) ions as the dissociation products were determined by checking the relative energies and geometries of the asymptote products along the PECs. In the Br-loss dissociation, the 1(2)A', 1(2)A", and 2(2)A' states correlate with CH3(+) (X1A1') and the 2(2)A" state correlates with CH3(+) (1(3)A"). The energy increases monotonically with the R(C-Br) value along the four Br-loss PECs. In the H-loss dissociation the 1(2)A', 1(2)A", 2(2)A', and 2(2)A" states correlate with the X(1)A(1), 1(3)A", 1(3)A', and 1(1)A" states (1(3)A' lying above 1(1)A") of CH2Br(+), respectively. Along the 2(2)A" H-loss PEC there is an energy barrier and the CASSCF wave functions at large R(C-H) values have shake-up ionization character. Along the 2(2)A' H-loss PEC there are an energy barrier and a minimum. At the end of the present paper we present a comprehensive review on the electronic states and the X-loss and H-loss dissociations of the CH(3)X(+) (X = F, Cl, and Br) ions on the basis of our previous studies and the present study.  相似文献   

12.
Complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with an atomic natural orbital basis were performed for the 1(2)A', 1(2)A', 2(2)A', 2(2)A', and 3(2)A' (X2E, A2A1, and B2E) states of the CH3F+ ion. The 1(2)A' state is predicted to be the ground state, and the C(s)-state energy levels are different from those of the CH3Cl+ ion. The 2(2)A' (A2A1) state is predicted to be repulsive, and the calculated adiabatic excitation energies for 2(2)A' and 3(2)A' are very close to the experimental value for the B state. The CASPT2//CASSCF potential energy curves (PECs) were calculated for F-loss dissociation from the five C(s) states and H-loss dissociation from the 1(2)A', 1(2)A', and 2(2)A' states. The electronic states of the CH3+ and CH2F+ ions as the dissociation products were carefully determined by checking the energies and geometries of the asymptote products, and appearance potentials for the two ions in different states are predicted. The F-loss PEC calculations for CH3F+ indicate that F-loss dissociation occurs from the 1(2)A', 1(2)A', and 2(2)A' states [all correlating with CH3+(X1A1')], which supports the experimental observations of direct dissociation from the X and A states, and that direct F-loss dissociation can occur from the two Jahn-Teller component states of B2E, 2(2)A' and 3(2)A' [correlating with CH3+(1(3)A') and CH3+(1(3)A'), respectively]. Some aspects of the 3(2)A' Cl-loss PEC of the CH3Cl+ ion are inferred on the basis of the calculation results for CH3F+. The H-loss PEC calculations for CH3F+ indicate that H-loss dissociation occurs from the 1(2)A', 1(2)A', and 2(2)A' states [correlating with CH2F+(1(3)A'), CH2F+(X1A1), and CH2F+(1(1)A'), respectively], which supports the observations of direct dissociation from the X and B states. As the 2(2)A' H-loss PEC of CH3Cl+, the 2(2)A' H-loss PEC of CH3F+ does not lead to H + CH2X+, but the PECs of the two ions represent different types of reactions.  相似文献   

13.
To examine the experimentally suggested scheme of the pathways for Cl- and H-loss dissociations of the CH(3)Cl(+) ion in the X(2)E (1(2)A', 1(2)A' '), A(2)A(1) (2(2)A'), and B(2)E (3(2)A', 2(2)A") states, the complete active space-self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with an atomic natural orbital (ANO) basis were performed for the 1(2)A' (X(2)A'), 1(2)A", 2(2)A', and 2(2)A'" states. The potential energy curves describing dissociation from the four C(s) states were obtained on the basis of the CASSCF partial geometry optimization calculations at fixed C-Cl or C-H distance values, followed by the CASPT2 energy calculations. The electronic states of the CH3(+) and CH(2)Cl(+) ions produced by Cl-loss and H-loss dissociation, respectively, were carefully determined. Our calculations confirm the following experimental facts: Cl-loss dissociation occurs from the 1(2)A' (X(2)A'), 1(2)A", and 2(2)A' states (all leading to CH3(+) (X(1)A(1)') + Cl), and H-loss dissociation does not occur from 2(2)A'. The calculations indicate that H-loss dissociation occurs from the 1(2)A' and 1(2)A' ' states (leading to CH(2)Cl(+) (X(1)A(1)) + H and CH(2)Cl(+) (1(3)A") + H, respectively). The calculations also indicate that H-loss dissociation occurs (with a barrier) from the 2(2)A" state (leading to CH(2)Cl(+) (1(1)A") + H), supporting the observation of direct dissociation from the B state to CH(2)Cl(+) and that Cl-loss dissociation occurs from the 2(2)A" state (leading to CH3(+) (1(3)A") + Cl), not supporting the previously proposed Cl-loss dissociation of the B state via internal conversion of B to A. The predicted appearance potential values for CH3(+) (X(1)A(1)') and CH(2)Cl(+) (X(1)A(1)) are in good agreement with the experimental values.  相似文献   

14.
We studied the 1(2)A' '(X2A' '), 1(2)A' (A2A'), 2(2)A' ' (B2A' '), and 2(2)A' (C2A') states of the C2H3Cl+ ion using the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods. For the four ionic states, we calculated the equilibrium geometries, adiabatic (T0) and vertical (Tv) excitation energies, and relative energies (Tv') at the geometry of the molecule at the CASPT2 level and the Cl-loss dissociation potential energy curves (PECs) at the CASPT2//CASSCF level. The computed oscillator strength f value for the X2A' ' <-- A2A' transition is very small, which is in line with the experimental fact that the A state has a long lifetime. The CASPT2 geometry and T0 value for the A2A' state are in good agreement with experiment. The CASPT2 Tv' values for the A2A', B2A' ', and C2A' states are in good agreement with experiment. The Cl-loss PEC calculations predict that the X2A' ', A2A', and C2A' states correlate to C2H3+ (XA1) and the BA' ' state to C2H3+ (1A' ') (the B2A' ' and C2A' PECs cross at R(C-Cl) approximately 2.24 A). Our calculations indicate that at 357 nm the X2A' ' state can undergo a transition to B2A' ' followed by a predissociation of B2A' ' by the repulsive C2A' state (via the B/C crossing), leading to C2H3+ (X1A1), and therefore confirm the experimentally proposed pathway for the photodissociation of X2A' ' at 357 nm. Our CASPT2 D0 calculations support the experimental fact that the X state does not undergo dissociation in the visible spectral region and imply that a direct dissociation of the A state to C2H3+ (X1A1) is energetically feasible.  相似文献   

15.
采用CASPT2/CASSCF方法对HO2自由基进行统计算, 优化了三个电子态的稳定点几何构型, 得到详细的频率数据. 利用垂直激发计算确定了3个里德堡态、11个价电子态的电子结构以及在三种理论水平上(CASSCF, SS-CASPT2和MS-CASPT2)的能量信息. 计算中使用了ANO-L和ANO-L+基组, 验证了已知实验数据的同时, 通过与其它理论计算结果的对比, 揭示了应用弥散轨道系数对于该体系激发态研究的重要性.  相似文献   

16.
Using the complete active space self-consistent field (CASSCF) method with 6-311++g(3df,3pd) basis sets, a few electronic states of nitrenes (CH3)3CN and (CH3)2CHN and their positive ions are calculated. All calculated states are valence states, and their characteristics are discussed in detail. In order to investigate the Jahn-Teller effect on (CH3)3CN radical, Cs symmetry was used for (CH3)3CN and (CH3)2CHN in the calculations. The results of our calculations (CASPT2 adiabatic excitation energies and RASSI oscillator strengths) suggest that the calculated transitions of (CH3)3CN at 27,710 cm(-1) and (CH3)2CHN at 28,110 cm(-1) are attributed to 23A' --> 13A', while those of (CH3)3CN at 28,916 cm(-1) and (CH3)2CHN at 29,316 cm(-1) are attributed to 13A' --> 13A'. The vertical and adiabatic ionization energies were obtained to compare with the photoelectron spectroscopic data. These results are in agreement with previous experimental data. Also, we present a comprehensive review on the CAS calculation results for (CH3)nCH(3-n)N (n = 0-3) presented in our previous and present papers.  相似文献   

17.
Electronic states of the C6H5F+ ion have been studied within C2v symmetry by using the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods in conjunction with an atomic natural orbital basis. Vertical excitation energies (Tv) and relative energies (Tv') at the ground-state geometry of the C6H5F molecule were calculated for 12 states. For the five lowest-lying states, 1(2)B1, 1(2)A2, 2(2)B1, 1(2)B2, and 1(2)A1, geometries and vibrational frequencies were calculated at the CASSCF level, and adiabatic excitation energies (T0) and potential energy curves (PEC) for F-loss dissociations were calculated at the CASPT2//CASSCF level. On the basis of the CASPT2 T0 calculations, we assign the X, A, B, C, and D states of the ion to 1(2)B1, 1(2)A2, 2(2)B1, 1(2)B2, and 1(2)A1, respectively, which supports the suggested assignment of the B state to (2)(2)B1 by Anand et al. based on their experiments. Our CASPT2 Tv and Tv' calculations and our MRCI T0, Tv, and Tv' calculations all indicate that the 2(2)B1 state of C6H5F+ lies below 1(2)B2. By checking the relative energies of the asymptote products and checking the fragmental geometries and the charge and spin density populations in the asymptote products along the CASPT2//CASSCF PECs, we conclude that the 1(2)B1, 1(2)B2, and 1(2)A1 states of C6H5F+ correlate with C6H5+ (1(1)A1) + F (2P) (the first dissociation limit). The energy increases monotonically along the 1(2)B1 PEC, and there are barriers and minima along the 1(2)B2 and 1(2)A1 PECs. The predicted appearance potential value for C6H5+ (1(1)A1) is very close to the average of the experimental values. Our CASPT2//CASSCF PEC calculations have led to the conclusion that the 1(2)A2 state of C6H5F+ correlates with the third dissociation limit of C6H5+ (1(1)A2) + F (2P), and a preliminary discussion is presented.  相似文献   

18.
Complete active space (CAS) calculations with 6-311++g(3df,3pd) basis sets were performed for a large number of electronic states of the nitrate free radical (CH3N/CH3CH2N) and their positive and negative ions. All calculated states are valence states, and their characters are discussed in detail. To investigate the Jahn-Teller effect on the CH3N radical, Cs symmetry was used for both CH3N and CH3CH2N in calculations. The results (CASPT2 adiabatic excitation energies and CASSI oscillator strengths) suggest that the calculated transitions of CH3N at 32172 and 32139 cm(-1) are attributed to the 2(3)A' ' --> 1(3)A' ' and 1(3)A' --> 1(3)A' ', respectively, which is in accordance with the A3E --> X3A2 emission spectrum at T0 = 31 817 cm(-1). The calculated transitions of CH3CH2N at 334 nm are attributed to the 1(3)A' ' --> 2(3)A' ' and 1(3)A' ' --> 1(3)A', respectively, which is in accordance with the UV absorption spectrum of a series of 11 bands beginning at 335 nm. The vertical and adiabatic ionization energies were obtained to compare with the PES data. These results are in agreement with previous experimental data, which is discussed in detail.  相似文献   

19.
The S0 (X1A′), T1 (a3A″), S1 (A1A″), T2 (b3A′), and S2 (B1A′) states of the (trans-)HONO molecule were studied by using the CASSCF and CASPT2 methods. The CASPT2(//CASPT2) adiabatic and vertical excitation energy values are in good agreement with available experimental data. The CASPT2//CASSCF potential energy curves (PECs) calculations indicate that: (i) all the five states correlate with the products of OH (X2Π) + NO (X2Π); (ii) along each of the T1, S1, and T2 PECs there is a minimum followed by a transition state (barrier); and (iii) the repulsive S2 PEC crosses the T2, S1, and T1 PECs. The geometries and relative energies for the stationary points along these PECs were calculated at the CASPT2(//CASPT2) level, and the calculations predict that the barrier height value for S1 is negligibly small (0.0018 eV).  相似文献   

20.
The electronic structure of azulene molecule has been studied. We have obtained the optimized structures of ground and singlet excited states by using the complete active space self-consistent-field (CASSCF) method, and calculated vertical and 0-0 transition energies between the ground and excited states with second-order M?ller-Plesset perturbation theory (CASPT2). The CASPT2 calculations indicate that the bond-equalized C(2v) structure is more stable than the bond-alternating C(s) structure in the ground state. For a physical understanding of electronic structure change from C(2v) to C(s), we have performed the CASSCF calculations of Duschinsky matrix describing mixing of the b(2) vibrational mode between the ground (1A(1)) and the first excited (1B(2)) states based on the Kekule-crossing model. The CASPT2 0-0 transition energies are in fairly good agreement with experimental results within 0.1-0.3 eV. The CASSCF oscillator strengths between the ground and excited states are calculated and compared with experimental data. Furthermore, we have calculated the CASPT2 dipole moments of ground and excited states, which show good agreement with experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号