首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
丙酸水相加氢反应中Ru负载量对C-C键断裂的影响   总被引:1,自引:1,他引:0  
考察了(1.0、4.0、6.0 wt.%)Ru/ZrO2催化剂的丙酸水相加氢性能。采用N2物理吸附、CO脉冲化学吸附、H2程序升温还原(H2-TPR)、CO和丙酸吸附傅里叶变换红外光谱(FTIR)研究了Ru/ZrO2催化剂的物理化学性质。CO-FTIR表明,Ru负载量增加,催化剂表面Ru粒子的富电子程度增加,更接近金属Ru的本征特性。丙酸FTIR表明,丙酸分子在Ru/ZrO2催化剂表面经解离吸附主要形成丙酰基和丙酸盐物种。随Ru含量增加,丙酰基更容易发生脱羰反应,导致C-C键断裂。  相似文献   

2.
采用多元醇还原法将2.4~5.4 nm范围内粒径均一、尺寸可控的Ru纳米粒子负载在ZrO2上,研究了Ru的粒径对Ru/ZrO2催化剂上苯部分加氢性能的影响.采用紫外-可见吸收光谱(UV-Vis)、N2物理吸附、H2化学吸附、H2-程序升温脱附(H2-TPD)、粉末X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等手段对催化剂进行了系统的表征.研究表明,用于还原的醇的种类及添加剂乙酸钠的浓度对Ru粒径有显著影响.在苯部分加氢反应中,Ru/ZrO2催化剂有明显的粒径效应.随着Ru粒径的增大,苯的转换频率(TOF)提高,环己烯初始选择性(S0)则呈火山型变化趋势,选择性最高时的Ru粒径为4.4 nm.1,2-丙二醇还原得到的Ru/ZrO2催化剂上S0及环己烯得率最高,分别可达82%和39%.结合催化剂的表征和加氢结果,讨论了Ru粒径影响苯部分加氢活性和选择性的原因.  相似文献   

3.
 考察了 Ru 助剂 (0.17%?9.96%) 对 Co/SiO2 催化剂结构及其费托合成反应性能的影响. 结果表明, Ru 助剂可降低 Co/SiO2 催化剂的还原温度, 从而提高其还原度. 光电子能谱和扩展 X 吸收射线精细结构研究表明, 即使 Ru 含量高达 9.96%, 在 Co/SiO2 催化剂焙烧过程中也未观察到 Ru 物种与 Co 物种作用形成的化合物. 还原后催化剂中 Ru 趋向于与 Co 物种紧密接触且分散在催化剂表面. H2 程序升温脱附结果表明, 随着 Ru 含量的增加, 位于反应温度附近的 H2 脱附峰面积增加, 即此时催化剂吸附 H2 能力提高, 因此反应活性单调增加, 但存在最佳 Ru 含量, 此时 C5+选择性最高.  相似文献   

4.
CO/H2在Cu/ZrO2催化剂表面吸附行为原位红外表征   总被引:3,自引:1,他引:2  
用原位FT-IR法比较了Cu/ZrO2和ZrO2催化剂表面对CO及CO/H2的吸附行为。结果表明,CO在50℃便可以在Cu/ZrO2表面形成b-HCOO-Zr、Zr-COO^-和b-HOCOOZr物种,吸附温度升高,b-HOCOOZr逐渐分解生成Zr-OH和CO2,而b-HCOO-Zr吸附物种逐渐增强。b-HCOO-Zr物种在Cu/ZrO2催化剂表面生成速度远远大于ZrO2催化剂。在Cu/ZrO2催化剂表面,所形成的合成甲醇中间物种(HCOO-Zr和CH3O-Zr)均和ZrO2有关,意味着CO加氢反应主要在ZrO2表面进行,铜组分主要向ZrO2提供吸附CO及H2物种。  相似文献   

5.
采用水热法对天然铝土矿进行改性,获得高比表面积的铝土矿(bauxite)载体.用等体积浸渍法制备了Ru含量为1.0%-4.0%(质量分数,下同)的Ru/bauxite催化剂和Ru含量为2.0%的Ru/Al2O3催化剂,以水煤气变换反应为探针反应,考察了催化剂性能.利用X射线荧光元素分析(XRF)、X射线粉末衍射(XRD)、低温N2物理吸附、H2程序升温还原(H2-TPR)以及CO程序升温脱附(CO-TPD)等对载体和催化剂样品进行表征.结果表明,不同Ru含量的Ru/bauxite催化剂具有优异的水煤气变换制氢性能,优于Ru/Al2O3催化剂.其原因是铝土矿本身含有的Fe2O3与负载的Ru之间发生了相互作用,降低了Fe2O3还原温度,提高了对CO的吸附能力且降低了CO的脱附温度,进而提高了催化剂的水煤气变换反应性能.  相似文献   

6.
采用不同沉淀剂制备了MgO材料,以其为载体制备了Ba-Ru/MgO氨合成催化剂,考察了沉淀剂种类和BaO助剂对其氨合成性能的影响.通过X射线衍射(XRD)、N2物理吸附、X射线荧光光谱(XRF)、透射电镜(TEM)、H2程序升温还原(H2-TPR)、CO2程序升温脱附(CO2-TPD)、H2程序升温脱附(H2-TPD)和N2程序升温脱附(N2-TPD)表征手段,对不同沉淀剂影响Ba-Ru/MgO催化剂氨合成性能的原因进行了探索.结果表明:采用(NH4)2CO3作沉淀剂制备的Ba-Ru/MgO催化剂表面Ru物种易于在低温下还原,催化剂表面在低温区具有较多数量的弱碱性吸附位,在450℃、5.0 MPa和5 000 h-1条件下,由(NH4)2CO3做沉淀剂制备的Ba-Ru/MgO催化剂活性最高,出口氨浓度为3.74%.BaO助剂的加入大大减少了Ba-Ru/MgO催化剂表面吸附氢的数量,增大表面脱附氮的数量,从而易于N2解离吸附,提高氨合成反应速率.  相似文献   

7.
分别采用柠檬酸络合法、改性共沉淀法和湿浸渍法制备了掺Ba纳米ZrO2材料,负载Ru后用于催化氨合成反应.采用X射线衍射、CO2程序升温脱附(CO2-TPD)、N2物理低温吸附、H2程序升温还原技术(H2-TPR)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)和CO化学吸附对载体材料和催化剂进行了表征.结果表明,不同方法制备载体的物相结构和织构性能均有明显差别,负载Ru后催化剂的氨合成性能差别也较大.其中,以柠檬酸络合法制备的载体材料中Ba以BaZrO3的形式存在,钙钛矿型BaZrO3具有较强的供电子能力,电子可以通过Ru与载体间强相互作用传递到Ru表面,有效地促进N≡N的断裂,使催化剂的低温活性显著提高.在425℃,3 MPa,空速为10000 h-1条件下,出口氨浓度为5.72%.其氨合成活性分别是改性共沉淀法和湿浸渍法制备催化剂的3.8倍和14.3倍.  相似文献   

8.
 用红外光谱法考察了Rh-Mn-Li-Ti/SiO2催化剂在CO加氢反应过程中表面吸附物种随压力、温度和H2/CO比的改变而变化的规律. 结果表明,高压有利于提高催化剂表面吸附的CO浓度和活性,高温有利于CO解离; 而高温、高压条件不但促进了CO吸附,而且提高并平衡了CO的解离和插入之间的相对活性,促进了C2含氧化合物的生成. H2/CO比的增大有利于CO在催化剂表面的吸附,从而促进了CO插入,尤其是CO的解离和加氢活性,但是过高的H2/CO比将导致过高的CO解离和加氢活性,引起CO插入活性的削弱而最终导致C2含氧化合物生成活性的下降. 同时,考察了助剂(Mn, Li和Ti)对Rh基催化剂表面吸附物种的影响. 结果表明,助剂的加入可提高C2含氧化合物的生成活性.  相似文献   

9.
用原位FT IR法比较了Cu ZrO2 和ZrO2 催化剂表面对CO及CO H2 的吸附行为。结果表明 ,CO在 5 0℃便可以在Cu ZrO2 表面形成b HCOO Zr、Zr COO- 和b HOCOOZr物种 ,吸附温度升高 ,b HOCOOZr逐渐分解生成Zr OH和CO2 ,而b HCOO Zr吸附物种逐渐增强。b HCOO Zr物种在Cu ZrO2 催化剂表面生成速率远远大于ZrO2 催化剂。在Cu ZrO2 催化剂表面 ,所形成的合成甲醇中间物种 (HCOO Zr和CH3O Zr)均和ZrO2 有关 ,意味着CO加氢反应主要在ZrO2 表面进行 ,铜组分主要向ZrO2 提供吸附CO及H2 物种。  相似文献   

10.
采用并流共沉淀方法制备了一系列不同铬含量的Cu/ZrO2/CNTs-NH2催化剂,在固定床反应器上考察铬对催化剂催化CO2加氢合成甲醇反应性能的影响.当铬含量为1%(w),反应温度为260°C,压力为3.0MPa,原料气组成为V(H2):V(CO2):V(N2)=69:23:8,空速为3600 mL·h-1·g-1时,催化剂的促进效果最显著,甲醇收率达7.78%.氮吸附、粉末X射线衍射(XRD)、氢气程序升温脱附(H2-TPR)、X射线光电子能谱(XPS)、二氧化碳程序升温脱附(CO2-TPD)、差热分析(DTA)以及扫描电子显微镜(SEM)等表征结果表明,随着铬含量的增加,铜颗粒的粒径减小,催化剂的比表面积增大.铬的加入一方面提高了铜的分散性,抑制了ZrO2的相变和活性组分的烧结;另一方面提高了CO2的吸附量并促进CO2由弱吸附向强吸附转化,从而提高甲醇的收率;但是当铬含量大于1%时,催化剂表面Cu、Zr的总含量明显下降,降低了CO2的吸附量并且形成了超强CO2吸附物种,抑制了CO2及其中间产物的转化,从而降低了甲醇收率.  相似文献   

11.
使用柠檬酸三钠作为稳定剂,硼氢化钠作为还原剂,用浸渍还原法制备了20%(w)Pt60Ru30Co10/C催化剂.利用透射电子显微镜(TEM)和X射线衍射(XRD)对催化剂进行了表征.考察了不同pH值对制备催化剂的催化甲醇氧化能力及稳定性的影响,并使用预吸附单层CO溶出方法研究了其抗中毒能力.结果表明,当pH=8时,制备的PtRuCo/C对甲醇氧化具有最高的催化活性,其催化活性远高于商业化的Pt50Ru50/C,同时催化剂的稳定性最好,高于商业化的Pt50Ru50/C的稳定性,而且预吸附单层CO的起始氧化电位比Pt50Ru50/C的明显负移.  相似文献   

12.
张耀君  李聚源  张君涛  辛勤 《化学学报》2004,62(21):2205-2208
用微量热法技术测量CO的微分吸附热以探测碳负载的单金属Pt,Ru及双金属Pt-Ru催化剂的CO表面吸附位.结果表明,单金属Pt催化剂显示出最高的初始微分吸附热(qinitial=125 kJ·mol-1);单金属Ru催化剂具有最低的初始微分吸附热(qinitial=109 kJ·mol-1);三种双金属PtRu催化剂的初始微分吸附热(qinitial=124~112 kJ·mol-1)界于两种单金属之间.当双金属PtRu催化剂Pt:Ru原子比为1:2时,催化剂Pt原子表面上的强CO吸附位(> 112 kJ·mol-1)被Ru原子所覆盖而完全消失.  相似文献   

13.
将微藻油等能源载体加工成有价值的燃料和化学品具有广阔的应用前景.由于从藻类细胞中分离固有水非常困难,因此以水相为溶剂适合含水微藻油的转化.而制备耐水且水热稳定的催化剂非常重要,因为许多载体容易被蒸汽破坏.其中,碳材料相当稳定,具有高的比表面积.然而,它们具有高度的憎水性,亲水性较差,因此很难与水中的反应物接触.本文中,我们合成了以高度亲水性介孔碳为载体的钌/碳催化剂,用于催化微藻油在低温(140°C)下一锅法于水相中定量加氢脱氧成烷烃.首先以淀粉和氯化锌为原料,在氮气中一步煅烧制备了介孔炭.其中,淀粉用作碳源,氯化锌则作为活化的路易斯酸和脱水剂.所得碳具有高的比表面积和孔体积,使得Ru纳米粒子具有较高的分散性.XPS表征表明, Ru/AC在286.5 e V处有一个与杂原子结合的sp2碳峰,表明催化剂上存在C–OH基团.值得注意的是, Ru/C-ZnCl_2催化剂在286.5 e V时的峰值比Ru/AC催化剂的峰值更强,显示Ru/C-ZnCl_2表面有更多的C–OH键.FTIR光谱研究表明,两种催化剂分别在3400和1530 cm–1处出现对应于O–H拉伸和C=C键的振动峰.有趣的是, Ru/C-ZnCl_2催化剂在1092 cm–1处显示出强且宽的峰证实了羟基的存在.但在Ru/AC催化剂中没有观察到该峰.催化剂的热重分析显示,在低于100°C、120–579°C和580°C的温度下分别出现三个峰,分别对应于脱水(表面水分)、去除含氧基团和载体分解.Ru/C-ZnCl_2催化剂的失重率(13%)是Ru/AC(3%)的4倍,与FTIR测试结果一致,表明Ru/C-ZnCl_2催化剂上的羟基含量较高.XPS、IR和TGA结果表明,碳材料表面富含羟基.另一方面,对Ru/C-ZnCl_2和Ru/AC催化剂进行了与水的接触角实验,通过比较Ru/C-ZnCl_2和Ru/AC与水的不同作用角,进一步证实了Ru/C-ZnCl_2比Ru/AC具有更好的亲水性.我们认为,碳材料相对于有机相优选地与水相接触,提高了基底的可接近性.同样,亲水性碳材料由于其水相容性而更适合于水相反应.催化剂对硬脂酸的反应结果显示, Ru/AC催化剂转化率为100%,硬脂醇收率52%,正庚烷收率43%,酯收率3%.而Ru/C-ZnCl_2催化剂的硬脂酸转化率为100%,正庚烷产率为88%,正十八烷产率为12%.原位FTIR研究了模型化合物丁酸在两种钌/碳催化剂上的吸附和加氢脱氧作用.实验结果表明,丁酸在Ru/C-ZnCl_2催化剂上显现了1720 m~(–1)处丁酸的羰基振动峰,这是由于其多孔性和对丁酸的吸附.相比之下, Ru/AC催化剂在1720 cm–1处未见出峰显示对丁酸的弱吸附.总之,在硬脂酸的串联加氢和脱羰反应中,亲水性介孔和亲水性Ru/C-ZnCl_2催化剂的动力学模拟和在水中的原位红外监测均显示出比商用Ru/AC催化剂优越的性能.本文设计的水热碳材料是一种高活性、环境友好、可持续、可循环利用的材料,在水热条件下的加氢反应中表现出很好的应用潜力.  相似文献   

14.
采用氧化还原共沉淀法制备了Ru/CeO2氨合成催化剂,并运用N2物理吸附、X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、CO吸附和H2程序升温还原(H2-TPR)等技术对其进行了表征,考察了沉淀时反应液的并流、反加、正加对所制备的Ru/CeO2催化剂氨合成性能的影响.结果表明,不同沉淀方式所得到的催化剂,催化剂的表面织构和金属钌的分散度都存在明显的差别,最终影响了催化剂的氨合成活性,其中采用反加法制备的催化剂上钌的分散度(45.6%)和还原性最好,比表面积最大(120 m2/g),因而催化活性最高,在10 MPa,10000 h?1,425℃反应时,出口NH3浓度达到12.6%.  相似文献   

15.
柠檬酸对Ru/AC氨合成催化剂结构和活性的影响   总被引:1,自引:0,他引:1  
使用柠檬酸(CA)修饰石墨化活性炭(AC)和钌以改善Ru/AC催化剂中钌粒子的尺寸分布和催化剂的活性, 并通过透射电镜(TEM)、热重分析(TGA)、CO化学吸附和N2物理吸附等方法研究了柠檬酸对AC和Ru/AC催化剂织构、钌的分散度和催化剂的活性等性质的影响. 结果表明, 负载的柠檬酸优先吸附于活性炭微孔, 少量柠檬酸即可大幅度降低活性炭的比表面积, 增加活性炭表面含氧官能团的数量, 改善了钌粒子分布. 最佳负载顺序是柠檬酸和氯化钌依次负载. 在活性炭中添加适量的柠檬酸对催化剂的低温活性有显著影响. 柠檬酸处理后的Ru/AC催化剂活性最大提高幅度为21.4%.  相似文献   

16.
Cu/MoO3-TiO2光催化CO2与C3H6反应合成甲基丙烯酸的性能   总被引:4,自引:0,他引:4  
梅长松  钟顺和 《催化学报》2004,25(12):937-942
 研究了Cu/MoO3-TiO2上CO2和C3H6的吸附特性及其光催化CO2与C3H6反应合成甲基丙烯酸(MAA)的性能. 结果表明,在Cu/MoO3-TiO2催化剂表面存在金属Cu位、Lewis酸位Mo6+和Ti4+以及Lewis碱位Mo-O-Ti的桥氧和Mo=O的端氧三类活性中心. 在金属Cu位和Lewis酸位Ti4+(Mo6+)的协同作用下,CO2形成活性较高的卧式吸附态Cu-(CO)-O→Ti4+(Mo6+),C3H6的β-H和β-C分别吸附在Lewis碱位 Mo=O 与金属Cu位上形成Cu-C(CH2)(CH3)-H→O=Mo吸附态. Cu/MoO3-TiO2催化剂吸收阈值蓝移和光吸收量的提高均有利于其催化活性的提高,Cu/10%MoO3-TiO2 光催化剂的催化活性优于其它MoO3含量的催化剂,光量子产率达22.8%,在110 ℃,0.1 MPa,空速200 h-1和125 W紫外灯辐照下,C3H6转化率为8.4%,MAA选择性超过95%. 提出了催化剂光促表面催化CO2与C3H6合成MAA的反应机理.  相似文献   

17.
采用共沉淀法制备质量比为1:1的MOx-SiO2(M=Ce,Zr,Al)复合氧化物,以此为载体采用浸渍法制备了铂基氧化型催化剂.考察了该系列催化剂在模拟柴油车尾气条件下,经SO2硫化前后对C3H8和CO的氧化性能.用X射线衍射(XRD)、低温N2吸附-脱附、氨气/氧气/二氧化碳程序升温脱附(NH3/O2/CO2-TPD)和X射线光电子能谱(XPS)等手段进行了表征.NH3-TPD证实催化剂表面存在多种酸中心,硫化后催化剂表面中强酸中心增多.O2-TPD证实催化剂表面存在α和β氧物种,硫化后催化剂表面氧脱附量减少.其中Pt/Al2O3-SiO2表面酸性最弱和表面氧脱附量最大.XPS结果表明新鲜催化剂经硫化后会使催化剂表面Pt的结合能降低.活性测试结果表明,三种催化剂对CO和C3H8的催化氧化活性均较好,其中Pt/ZrO2-SiO2抗SO2中毒性能最佳,具有良好的应用前景.  相似文献   

18.
用初湿含浸法制备了不同Ru添加量的Co/SiO2模型催化剂,然后进行N2物理吸附、XRD、H2-TPD、DRIFTS等表征和微分固定床费托(F-T)反应评价。F-T反应结果表明,催化剂中添加Ru后,CO转化率显著提高,TOF值增大,CO2和CH4选择性降低,烯/烷比(O/P)降低。FT-IR表征说明,催化剂添加Ru后Co-O键的强度减弱,相对应的H2-TPR也表明,催化剂的还原度得到显著提高。还原后的催化剂XRD结果进一步证实,加入Ru后,催化剂无钴氧化物被检出,并且当Ru添加量为0.5%(质量分数)时催化剂中金属钴主要以六方密堆(hcp)形式存在。CO-DRIFTS结果显示,Ru的加入使CO的吸收峰发生红移,即Ru促进了CO的解离。H2-TPD结果则表明,随着Ru添加量的增加,催化剂表面COads/Cos和CO*/Cos增大,这是CH4选择性降低的主要原因。  相似文献   

19.
采用调变的多元醇法制备了高分散的Pt/C, PtRu/C和Ru/C电催化剂. XRD计算结果表明, PtRu/C电催化剂的平均粒径和合金度分别为2.2 nm和71%. 采用电化学方法和原位傅里叶变换红外反射光谱方法(in situ FTIRS)研究了甲醇在3种电催化剂上的吸附氧化过程, 发现PtRu/C对甲醇的催化活性明显高于Pt/C, Ru的加入一方面影响了甲醇在Pt上的解离吸附性能, 另一方面提供了Ru-OH物种, 从而抑制了低电位下电催化剂中毒. 红外光谱研究结果表明, 线性吸附态CO(COL)是主要毒化物种, 反应产物主要是CO2, 还有少量的甲酸甲酯. 根据实验结果讨论了甲醇在PtRu/C电催化剂上的氧化机理.  相似文献   

20.
采用N2物理吸附、Boehm滴定、He-TPD-MS、CO化学吸附和透射电镜等手段考察了硝酸水热处理对活性炭(AC)及其负载的Ru基催化剂的孔结构、表面含氧基团、Ru分散度的影响,并评价了Ba-Ru-K/AC催化剂氨合成反应性能.结果表明,经硝酸水热处理后,AC表面含氧基团明显增多,但其孔结构变化不大.随着水热处理硝酸浓度的增加,AC表面含氧基团的数量增加,而相应催化剂的Ru分散度有所降低,Ru粒子尺寸增大.当硝酸浓度为2.0mol/L时,Ru分散度较高,且粒子尺寸(2.0nm)适宜,分散均匀,因此催化剂活性较高.在10MPa和10000h1条件下,400和375oC时,出口氨浓度分别达到17.80%和11.10%,较4.6mol/L硝酸回流处理AC负载的Ru基催化剂分别提高了16.8%和21.3%.水热处理AC的适宜条件为硝酸浓度2.0mol/L,150oC处理4h,填充度为70%.因此,通过调节水热处理时所用硝酸浓度可有效调控AC表面含氧基团的数量及其负载Ru的粒子尺寸.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号