首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
三氢钌化物[(C_5H_6)Ru(PPh_3)H_3](1)经光解反应生成了一个双核钌氢化合物[(C_5H_5)Ru·(PPh_3)(μ-H)]_2(2)。用X射线重原子法及Fourier迭代解出了2的晶体结构,其分子呈二聚形式,Ru-Ru键处在对称中心,两个钌原子间还通过两个桥氢原子相联。该二聚体的单体为16电子物种,与推测的碳氢键活化反应的中间体类似,为金属有机氢化物活化碳氢键的反应历程提供了证据.文中还给出了2的可能形成过程.  相似文献   

2.
配位催化己成实现绿色化学中的重要手段之一[1,2].过渡金属配合物是重要的配位催化剂,但中心金属多为贵金属,其中钌的儲量较大,也较便宜.不过,钌配合物的催化性能也较差.在国内外学者的努力下,近年在钌配合物的合成和催化方面都得到很大发展[3],如钌卡宾[C l2Ru(=CHPh)(PCy3)2]催化的交互置换反应获2005年Nobel化学奖[4].过渡金属氢配合物是一类重要的配合物,被称为“催化反应的关键”[5].如铱氢配合物首开了活化饱和碳氢键的先河,铼氢配合物实现了饱和碳氢键催化循环[6];钌氢配合物在催化加氢等反应中也表现不俗[7].我们试图对钌氢配合…  相似文献   

3.
氨是关系国计民生的大宗化学品,也是氢能源的重要载体.目前,世界合成氨工业每年消耗约2%的世界总能源,并排放超过1%的CO2,节能降耗需求十分迫切,其中的关键在于高性能氨合成催化剂的开发.传统观点认为,B5活性位是钌催化剂上氮解离和氨合成的活性位,当钌粒子尺寸在1.8~2.5 nm时催化剂的B5活性位数量最多,而钌尺寸较小(0.7~0.8 nm)的催化剂几乎没有氨合成活性.本文通过改变钌负载量调变了氧化铈负载钌催化剂的钌表面浓度,证实钌粒子尺寸低于2.0nm时,氧化铈负载钌催化剂也具有较高的氨合成活性.XPS等表征结果证实:钌表面密度低于0.68 Ru nm-2时,钌主要以层状形式存在于氧化铈表面,层状钌与氧化铈紧密接触,电子从氧化铈的缺陷位传递给钌物种,在这种情况下,Ru 3d5/2的结合能有所下降,氮解离能力增强,这有利于提高催化剂的氨合成活性;当钌表面密度约为0.68 Ru nm-2时,钌金属传递电子给氧化铈,此时Ru 3d5/2结合能有所增加;当钌表面密度高于1.4 Ru nm-2后,钌物种优先在层状钌表面聚集成大尺寸钌纳米粒子,此时催化剂中同时存在钌团簇和钌纳米粒子,氧化铈载体对钌粒子电子性质的影响减弱,因此大尺寸钌金属颗粒Ru 3d5/2结合能又有所下降.另一方面,氢分子会在氧化铈表面形成均裂产物(两个OH基团)或异裂产物(Ce-H和OH).同时氢分子还会在0价钌金属表面解离形成氢原子,并进一步溢流到氧化铈表面与氧原子作用形成羟基.钌活性位上的氢物种比氧化铈中的氢更容易脱附,因此氧化铈中钌的存在不仅可以增强其氢吸附量,还降低了氢物种的吸附强度.当钌表面密度低时,氧化铈与钌的相互作用较强,催化剂中的氢物种容易溢流到氧化铈中形成羟基基团,此时催化剂的氢吸附能力增强,氢中毒问题较显著.当钌表面密度较高时,氢原子在大尺寸钌颗粒上移动、反应和脱附,因此催化剂的氢中毒问题也得到显著缓解.总之,对于氧化铈负载钌催化剂,氧化铈与钌金属之间的电子相互作用以及其吸附性质都会影响催化剂的氨合成活性,因此钌表面密度低于0.31 Ru nm-2以及约为2.1 Ru nm-2时,催化剂都展现出了较高的氨合成活性.本文将为设计制备高性能钌基氨合成催化剂提供理论指导.  相似文献   

4.
研究了[NiCl~2(PPh~3)~2],B~1~0H~1~0^2^-与硫代苯甲酸的反应,得到四个簇合物,其中三个簇合物[(PPh~3)(PhCOS)~2Ni·B~1~0H~1~0]·0.5C~6H~1~4(1),[(PhCOS)~2NiB~1~0H~8(PPh~3)](2),[(PhCOS)~3NiB~1~0H~7(PPh~3)](3)。通过单晶X射线衍射进行了结构研究。三个簇合物均为十一顶巢式构型,并分别存在两个、两个、三个簇外环化的五元环,具有三个环的簇合物至今未见其它文献报道。结构分析表明:簇外环化可以增强Ni-B之间的成键作用。  相似文献   

5.
合成了含二氮芴和联吡啶等配体的一系列新型钌铁双核配合物:[(C~1~0H~6N~2)C=N-N=CR-Fc)Ru(bpy)~2]·(PF~6)~2,[(C~1~0H~6N~2)C=N--C~6H~4-N=CR-Fc)Ru(bpy)~2]·(PF~6)~2,[(C~1~0H~6N~2)C=N-C~6H~4-C~6H~4-N=CR-Fc)Ru(bpy)~2]·(PF~6)~2,并对其进行了光谱表征,通过对该类配合物的循环伏安和发光光谱研究,讨论其激发态的氧化还原性和对[Ru(bpy)~3]^2^+发光过程的猝灭作用.研究表明猝灭过程为扩散控制的双分子交换能量传递  相似文献   

6.
王巍  刘晶晶  张龙 《应用化学》2013,30(4):389-393
以自制的乙酰丙酮钌配合物(Ru(acac)3)为催化剂,甲酸钠为氢供体,十六烷基三甲基溴化铵为乳化剂,研究了水溶液中催化硝基苯氢转移氢化制苯胺的工艺。 确定了适宜反应条件为:甲酸钠和硝基苯摩尔比为2∶1,反应温度80 ℃,反应时间4.0 h,Ru(acac)3用量为硝基苯质量的4%。 硝基苯的转化率和苯胺产率分别为100%和96.65%,表明Ru(acac)3对硝基苯氢转移氢化制苯胺具有优异的催化作用。  相似文献   

7.
张春红  张弘  魏爱琳  何旭敏  夏海平 《化学学报》2013,71(10):1373-1378
研究了配位不饱和的钌杂s-顺丁二烯化合物[Ru(CHC(PPh3)CH(2-Py))Cl2PPh3]BF4 (1)与水、甲醇、苯胺和2-巯基吡啶等亲核试剂的[4+1]关环反应, 合成了一系列有趣的钌杂多环化合物[Ru(CHC(PPh3)CHR(2-Py))Cl(PPh3)2]BF4 [R=OH (2), OMe (3), 和NHPh (4)]与[Ru(CHC(PPh3)CH(S(2-Py))(2-Py))PPh3(S(2-Py)]BF4 (5). 此外, 将配位不饱和的钌配合物1与三苯基膦配体反应, 制备了类似于氮杂金属萘的配位饱和化合物[Ru(CHC(PPh3)CH(2-Py))Cl2(PPh3)2]BF4 (6). 6与HBF4反应可生成金属杂环结构类似的分子内含三氯桥的双钌核配合物[{Ru(CHC(PPh3)CH(2-Py))PPh3}2(μ-Cl)3](BF4)3 (7). 以上产物均通过核磁(NMR)与元素分析进行了表征, 并解析了部分产物的X射线单晶结构.  相似文献   

8.
氯化钌氨作前驱体制备高活性的氨合成催化剂   总被引:4,自引:0,他引:4  
以氯化钌和水合肼反应制备了新型的氧化钌氨前驱体Ru(NH3)5Cl3.透射电镜和CO化学吸附结果表明,由Ru(NH3)5Cl3前驱体制备的活性炭(AC)负载的RuN/AC催化剂中.钌纳米粒子分散度高,粒径分布均匀.与以氯化钌为前驱体制备的Ru/AC催化剂相比,RuN/AC催化剂具有更高的氨合成活性,在10 MPa和10 000 h-1条件下活性增幅超过10%.  相似文献   

9.
以十二羰基三钌和o-PPh2C6H4NR2(R=H,Me)配体为原料,成功制备了三种新型羰基钌化合物(μ-o-PPh2-C6H4NH)Ru3(μ-H)(CO)9(2)、(o-PPh2C6H4NH)2Ru(CO)2(3)和(μ-o-PPh2C6H4NMe2)2Ru(CO)3(4).对这三个化合物进行了核磁共振和红外谱学、元素分析和X射线单晶衍射分析表征,并对这三个化合物进行了催化性能研究.化合物2和4可催化苯甲醛加氢反应生成苯甲醇,但是3没有催化活性.从实验角度阐述了膦胺配体钌催化剂的结构与性能关联,进一步探讨了加氢催化反应失活的可能原因.  相似文献   

10.
配体PyCH_2COPh与Ru_3(CO)_(12)在甲苯中加热回流,得到了标题簇合物[PyCH=C(Ph)O]2Ru3(CO)8(1)。通过红外光谱、核磁共振氢谱和碳谱对1的结构进行了表征,用X射线单晶衍射法测定了1的结构。结果表明:3个钌原子呈等腰三角形分布,其中Ru(2)-Ru(1)和Ru(2)-Ru(1)i的键长均为0.280 nm,Ru(1)-Ru(1)i的键长为0.307 nm。同时研究了簇合物1与环戊二烯及茚的反应,分别得到双核钌羰基配合物[(η~5-C_5H_5)Ru(CO)]_2(μ-CO)_2(2)和[(η~5-C_9H_7)Ru(CO)]2(μ-CO)_2(3)。  相似文献   

11.
本文采用原位合成法制备了钌/氮掺杂石墨烯(Ru/NGR)催化剂,并采用X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)等手段对催化剂的结构形貌进行了表征。将Ru/NGR催化剂应用于硼氢化钠水解制氢体系,考察了钌的负载量、硼氢化钠的浓度、反应温度等对硼氢化钠产氢的催化性能的影响。研究结果表明:当温度为25℃,硼氢化钠浓度为2 wt%,钌负载量为3.9%时,产氢速率可达32.95 L·(gRu·min)^-1。通过对Ru/NGR催化剂催化硼氢化钠水解反应动力学数据研究研究得出该催化剂的活化能为46 kJ·mol^-1。  相似文献   

12.
本文通过η^5-Bz~5C~5MNa与氧化偶联试剂Fe~2(SO~4)~3/HOAC/H~2O的反应合成了含η^5-五苄基环戊二烯基配体的两个金属-金属单键化合物[η^5-Bz~5C~5(CO)~3M]~2 (1: M=Mo; 2: M=W) , 产率分别为45%和19% . 1 在沸腾的甲苯中可进一步脱碳而以98%的产率生成金属-金属叁键化合物[η^5-Bz~5C~5(CO)~2Mo]~2 (3).1~3的结构均经碳氢分析, IR, ^1H NMR 和MS鉴定. 3的结构尚被单晶X射线衍射分析确证 .  相似文献   

13.
采用TPR-MS技术研究了Ba(NO3)2/AC(AC:活性炭)、KNO3/AC和Ba-Ru-KNO3/AC在H2中的还原情况。实验结果表明,KNO3/AC和Ba(NO3)2/AC分别在400℃和350℃发生还原,生成N2O和N2两种较高价态的还原产物,且助剂的还原不完全。与Ba(NO3)2/AC和KNO3/AC相比,Ba-Ru-KNO3/AC催化剂在加入活性物质钌的情况下,不仅使助剂的还原温度显著降低,而且反应的主要产物也发生了变化,大部分的硝酸根离子被彻底还原成NH3。这可能是由于Ru的存在使氢发生溢流现象,氢活化能力增强,使催化剂表面富含还原所需活化氢物种,导致助剂在较低的温度下被彻底还原。由于Ru的催化作用,载体的甲烷化温度明显降低。提高还原温度虽然对催化剂中氯离子的脱除有利,但同时也会使钌晶粒长大烧结,抑制氨合成的活性。实验结果表明,在制备钌催化剂时,还原除氯的适宜温度为200℃左右。  相似文献   

14.
氨是关系国计民生的大宗化学品,也是氢能源的重要载体.目前,世界合成氨工业每年消耗约2%的世界总能源,并排放超过1%的CO_2,节能降耗需求十分迫切,其中的关键在于高性能氨合成催化剂的开发.传统观点认为,B_5活性位是钌催化剂上氮解离和氨合成的活性位,当钌粒子尺寸在1.8~2.5 nm时催化剂的B_5活性位数量最多,而钌尺寸较小(0.7~0.8 nm)的催化剂几乎没有氨合成活性.本文通过改变钌负载量调变了氧化铈负载钌催化剂的钌表面浓度,证实钌粒子尺寸低于2.0 nm时,氧化铈负载钌催化剂也具有较高的氨合成活性.XPS等表征结果证实:钌表面密度低于0.68 Ru nm~(-2)时,钌主要以层状形式存在于氧化铈表面,层状钌与氧化铈紧密接触,电子从氧化铈的缺陷位传递给钌物种,在这种情况下,Ru 3d_(5/2)的结合能有所下降,氮解离能力增强,这有利于提高催化剂的氨合成活性;当钌表面密度约为0.68 Ru nm~(-2)时,钌金属传递电子给氧化铈,此时Ru 3d_(5/2)结合能有所增加;当钌表面密度高于1.4 Ru nm~(-2)后,钌物种优先在层状钌表面聚集成大尺寸钌纳米粒子,此时催化剂中同时存在钌团簇和钌纳米粒子,氧化铈载体对钌粒子电子性质的影响减弱,因此大尺寸钌金属颗粒Ru 3d_(5/2)结合能又有所下降.另一方面,氢分子会在氧化铈表面形成均裂产物(两个OH基团)或异裂产物(Ce-H和OH).同时氢分子还会在0价钌金属表面解离形成氢原子,并进一步溢流到氧化铈表面与氧原子作用形成羟基.钌活性位上的氢物种比氧化铈中的氢更容易脱附,因此氧化铈中钌的存在不仅可以增强其氢吸附量,还降低了氢物种的吸附强度.当钌表面密度低时,氧化铈与钌的相互作用较强,催化剂中的氢物种容易溢流到氧化铈中形成羟基基团,此时催化剂的氢吸附能力增强,氢中毒问题较显著.当钌表面密度较高时,氢原子在大尺寸钌颗粒上移动、反应和脱附,因此催化剂的氢中毒问题也得到显著缓解.总之,对于氧化铈负载钌催化剂,氧化铈与钌金属之间的电子相互作用以及其吸附性质都会影响催化剂的氨合成活性,因此钌表面密度低于0.31 Ru nm~(-2)以及约为2.1 Ru nm~(-2)时,催化剂都展现出了较高的氨合成活性.本文将为设计制备高性能钌基氨合成催化剂提供理论指导.  相似文献   

15.
本文合成了庚烯配位的羰基钌氢簇合物H~3Ru~3(CO)~9(C~7H~1~1),用IR, NMR,MS和元素分析等手段对此簇合物进行了结构表征,推测其为含有金属- 氢键的羰基钌簇合物,并且庚烯的双键被打开.X射线衍射测定进一步肯定了上述结论.簇合物为三斜晶系,空间群为PI.晶胞参数:a=0.9726(2)nm,b=0.9868(1)nm,c=1.1104(2)nm,α=103.22(1)°,β=89.89(1)°,γ=91.55(1)°,V=1.0370(3)nm^3,Z=2,μ=21.59cm^-^1,D~0=2.09g/cm^3,F(000)=628,最终偏差因子R=0.0371  相似文献   

16.
钌硫化合物的组成测定和氢还原动力学研究   总被引:1,自引:0,他引:1  
用静态和动态库仑滴定法分别对元素合成的硫化钌和两种湿法沉淀的硫化钌进行了研究, 确定了硫化钌的组成和分子式, 阐明了化合物在高温被氢还原的动力学特性, 根据研究结果, 推测出非晶态的原始Ru2S3.10H2O具有RuS.RuS2.10H2O的结构。  相似文献   

17.
[Ru3(CO12)]与Lawesson试剂[(MeOC6H4PS2)2]反应,合成、分离并用谱学表征了产物三核钌羰合族[(μ-H)2(Ru)(CO)9(μ3-P)](Ⅰ)和四核钌羰合簇[Ru4(CO)10( μ3-PC6H4OM)](Ⅱ),X射线衍射测定了Ⅰ晶体分子结构,表明Ⅰ含有1个裸磷原子作为面桥基配体,并具有颇短的Ru-Ru键距,该价电子数为49e的族合物对氧和水稳定,谱学分析表明,化合物Ⅱ具有四面体型的Ru4簇心。其三角形面上分别具有面桥基μ3-S和μ3=PC6H4OMe基配体。  相似文献   

18.
钌可以促使炔烃通过亚乙烯基钌卡宾金属配合物或钌金属杂环配合物的形式发生碳-碳偶联反应,它的化学性质很大程度上取决于配体的电子和立体特征.普通环戊二烯基钌配合物可以促使炔烃三聚生成苯环衍生物或使两分子炔烃和一分子含C=X键(X=C,O,S,N等)的不饱和底物发生环加成反应得到杂环化合物.含桥联碳硼烷-环戊二烯基配体的钌乙腈配合物[η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NCCH3)2(1)表现出与环戊二烯基钌不同的反应性质.例如,配合物1与三甲基硅基取代的端炔或中间炔反应可生成含有单或双亚乙烯基有机钌卡宾配合物;与末端芳炔则通过三分子炔和桥联配体中的环戊二烯基发生加成反应得到含有独特三环结构的有机钌配合物.以上结果表明,配体的位阻效应和炔烃的种类都可以影响产物的类型.本文进一步研究了此钌乙腈配合物1与烷基或芳基取代的中间炔及中间二炔的反应.配合物1与3-己炔或二苯乙炔在甲苯中于80℃反应可以生成对空气和水稳定的η4-钌-环丁二烯配合物[η5:σ-Me2C(C5H4)(C2B10H10)]Ru(η4-C4Et4)(2)或[η5:σ-Me2C(C5H4)(C2B10H10)]Ru(η4-C4Ph4...  相似文献   

19.
刘丁嘉  于海珠  傅尧 《化学学报》2013,71(10):1385-1395
导向过渡金属催化反应是实现区域选择性芳环碳氢活化/衍生化的一种重要手段. 本文使用DFT理论(M06//B3LYP)对Frost小组的钌催化2-芳基吡啶间位磺化反应机理进行了研究. 通过计算, 我们发现该机理主要包括邻位C—H活化、亲电取代、还原消除及催化剂再生四个步骤. 其中导向邻位C—H活化是速率决定步, 亲电取代为区域选择决定步. Ru与导向基邻位碳原子成键使苯环电子密度分布发生变化, 同时与位阻作用相结合引导亲电取代发生在Ru—C键的对位(即导向基间位). 在此基础上, 我们还研究了K2CO3和溶剂极性对反应的影响.  相似文献   

20.
钌催化降冰片烯开环移位聚合的研究   总被引:1,自引:0,他引:1  
钱延龙  陈斌  金军挺  黄吉玲 《化学学报》2000,58(8):1050-1052
CpRuCl(PPh~3)~2/O~2和CH~3OCH~2CH~2CpRuCl(PPh~3)~2/O~2体系对降冰片(NBE)开环移位聚合(ROMP)有活性,降冰片烯的转化率和聚降冰片烯主链双键顺反比与气氛催化剂摩尔比及催化剂本身性质有关。在实验的基础上提出了钌催化降冰片烯开环移位聚合的可能机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号