首页 | 本学科首页   官方微博 | 高级检索  
     检索      

氧化铈负载钌催化剂中钌表面密度对氨合成活性和氢中毒的影响
引用本文:林炳裕,吴玉远,方笔耘,李春艳,倪军,王秀云,林建新,江莉龙.氧化铈负载钌催化剂中钌表面密度对氨合成活性和氢中毒的影响[J].催化学报,2021,42(10):1712-1723.
作者姓名:林炳裕  吴玉远  方笔耘  李春艳  倪军  王秀云  林建新  江莉龙
作者单位:福州大学化工学院,化肥催化剂国家工程研究中心,福建福州350002
摘    要:氨是关系国计民生的大宗化学品,也是氢能源的重要载体.目前,世界合成氨工业每年消耗约2%的世界总能源,并排放超过1%的CO2,节能降耗需求十分迫切,其中的关键在于高性能氨合成催化剂的开发.传统观点认为,B5活性位是钌催化剂上氮解离和氨合成的活性位,当钌粒子尺寸在1.8~2.5 nm时催化剂的B5活性位数量最多,而钌尺寸较小(0.7~0.8 nm)的催化剂几乎没有氨合成活性.本文通过改变钌负载量调变了氧化铈负载钌催化剂的钌表面浓度,证实钌粒子尺寸低于2.0nm时,氧化铈负载钌催化剂也具有较高的氨合成活性.XPS等表征结果证实:钌表面密度低于0.68 Ru nm-2时,钌主要以层状形式存在于氧化铈表面,层状钌与氧化铈紧密接触,电子从氧化铈的缺陷位传递给钌物种,在这种情况下,Ru 3d5/2的结合能有所下降,氮解离能力增强,这有利于提高催化剂的氨合成活性;当钌表面密度约为0.68 Ru nm-2时,钌金属传递电子给氧化铈,此时Ru 3d5/2结合能有所增加;当钌表面密度高于1.4 Ru nm-2后,钌物种优先在层状钌表面聚集成大尺寸钌纳米粒子,此时催化剂中同时存在钌团簇和钌纳米粒子,氧化铈载体对钌粒子电子性质的影响减弱,因此大尺寸钌金属颗粒Ru 3d5/2结合能又有所下降.另一方面,氢分子会在氧化铈表面形成均裂产物(两个OH基团)或异裂产物(Ce-H和OH).同时氢分子还会在0价钌金属表面解离形成氢原子,并进一步溢流到氧化铈表面与氧原子作用形成羟基.钌活性位上的氢物种比氧化铈中的氢更容易脱附,因此氧化铈中钌的存在不仅可以增强其氢吸附量,还降低了氢物种的吸附强度.当钌表面密度低时,氧化铈与钌的相互作用较强,催化剂中的氢物种容易溢流到氧化铈中形成羟基基团,此时催化剂的氢吸附能力增强,氢中毒问题较显著.当钌表面密度较高时,氢原子在大尺寸钌颗粒上移动、反应和脱附,因此催化剂的氢中毒问题也得到显著缓解.总之,对于氧化铈负载钌催化剂,氧化铈与钌金属之间的电子相互作用以及其吸附性质都会影响催化剂的氨合成活性,因此钌表面密度低于0.31 Ru nm-2以及约为2.1 Ru nm-2时,催化剂都展现出了较高的氨合成活性.本文将为设计制备高性能钌基氨合成催化剂提供理论指导.

关 键 词:氨合成  氧化铈负载钌催化剂  钌表面密度  氢吸附  氢中毒

Ru surface density effect on ammonia synthesis activity and hydrogen poisoning of ceria-supported Ru catalysts
Bingyu Lin,Yuyuan Wu,Biyun Fang,Chunyan Li,Jun Ni,Xiuyun Wang,Jianxin Lin,Lilong Jiang.Ru surface density effect on ammonia synthesis activity and hydrogen poisoning of ceria-supported Ru catalysts[J].Chinese Journal of Catalysis,2021,42(10):1712-1723.
Authors:Bingyu Lin  Yuyuan Wu  Biyun Fang  Chunyan Li  Jun Ni  Xiuyun Wang  Jianxin Lin  Lilong Jiang
Abstract:Evaluating the effect of metal surface density on catalytic performance is critical for designing high-activity metal-based catalysts.In this study,a series of ceria (CeO2)-supported Ru catalysts(Ru/CeO2) were prepared to analyze the effect of Ru surface density on the catalytic performance of Ru/CeO2 for ammonia synthesis.For the Ru/CeO2 catalysts with Ru surface densities lower than 0.68 Ru nm-2,the Ru layers were in close contact with CeO2,and electrons were transferred directly from the CeO2 defect sites to the Ru species.In such cases,the adsorption of hydrogen species on the Ru sites in the vicinity of O atoms was high,leading to a high ammonia synthesis activity and strong hydrogen poisoning.In contrast,the preferential aggregation of Ru species into large particles on top of the Ru overlayer resulted in the coexistence of Ru clusters and particles,for catalysts with a Ru surface density higher than 1.4 Ru nm-2,for which Ru particles were isolated from the direct electronic influence of CeO2.Consequently,the Ru-CeO2 interactions were weak,and hydrogen poisoning can be significantly alleviated.Overall,electron transfer and hydrogen adsorption syner-gistically affected the synthesis of ammonia over Ru/CeO2 catalysts,and catalyst samples with a Ru surface density lower than 0.31 Ru nm-2 or exactly 2.1 Ru nm-2 exhibited high catalytic activity for ammonia synthesis.
Keywords:Ammonia synthesis  Ceria-supported Ru catalyst  Ru surface density  Hydrogen adsorption  Hydrogen poisoning
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号