首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 150 毫秒
1.
氨是关系国计民生的大宗化学品,也是氢能源的重要载体.目前,世界合成氨工业每年消耗约2%的世界总能源,并排放超过1%的CO_2,节能降耗需求十分迫切,其中的关键在于高性能氨合成催化剂的开发.传统观点认为,B_5活性位是钌催化剂上氮解离和氨合成的活性位,当钌粒子尺寸在1.8~2.5 nm时催化剂的B_5活性位数量最多,而钌尺寸较小(0.7~0.8 nm)的催化剂几乎没有氨合成活性.本文通过改变钌负载量调变了氧化铈负载钌催化剂的钌表面浓度,证实钌粒子尺寸低于2.0 nm时,氧化铈负载钌催化剂也具有较高的氨合成活性.XPS等表征结果证实:钌表面密度低于0.68 Ru nm~(-2)时,钌主要以层状形式存在于氧化铈表面,层状钌与氧化铈紧密接触,电子从氧化铈的缺陷位传递给钌物种,在这种情况下,Ru 3d_(5/2)的结合能有所下降,氮解离能力增强,这有利于提高催化剂的氨合成活性;当钌表面密度约为0.68 Ru nm~(-2)时,钌金属传递电子给氧化铈,此时Ru 3d_(5/2)结合能有所增加;当钌表面密度高于1.4 Ru nm~(-2)后,钌物种优先在层状钌表面聚集成大尺寸钌纳米粒子,此时催化剂中同时存在钌团簇和钌纳米粒子,氧化铈载体对钌粒子电子性质的影响减弱,因此大尺寸钌金属颗粒Ru 3d_(5/2)结合能又有所下降.另一方面,氢分子会在氧化铈表面形成均裂产物(两个OH基团)或异裂产物(Ce-H和OH).同时氢分子还会在0价钌金属表面解离形成氢原子,并进一步溢流到氧化铈表面与氧原子作用形成羟基.钌活性位上的氢物种比氧化铈中的氢更容易脱附,因此氧化铈中钌的存在不仅可以增强其氢吸附量,还降低了氢物种的吸附强度.当钌表面密度低时,氧化铈与钌的相互作用较强,催化剂中的氢物种容易溢流到氧化铈中形成羟基基团,此时催化剂的氢吸附能力增强,氢中毒问题较显著.当钌表面密度较高时,氢原子在大尺寸钌颗粒上移动、反应和脱附,因此催化剂的氢中毒问题也得到显著缓解.总之,对于氧化铈负载钌催化剂,氧化铈与钌金属之间的电子相互作用以及其吸附性质都会影响催化剂的氨合成活性,因此钌表面密度低于0.31 Ru nm~(-2)以及约为2.1 Ru nm~(-2)时,催化剂都展现出了较高的氨合成活性.本文将为设计制备高性能钌基氨合成催化剂提供理论指导.  相似文献   

2.
采用不同来源氧化镁(市售MgO-1,合成MgO-2)作为钌基氨合成催化剂载体,浸渍法制备了添加不同BaO助剂含量的Ba-Ru/MgO催化剂,通过X射线衍射(XRD)、热重-量热扫描分析(TG/DSC)、N2-低温物理吸附、透射电镜(TEM)、H2程序升温还原(H2-TPR)和CO2程序升温脱附(CO2-TPD)等手段对其进行了表征,考察了不同来源的MgO和BaO助剂含量对负载型钌基氨合成催化剂的物相结构、织构性质、微观形貌、Ru物种的还原性质和体系酸碱性质以及催化剂的氨合成活性等方面的影响。结果表明,MgO的理化性质对所制备的钌基氨合成催化剂的结构以及氨合成活性有较大影响。MgO-2比表面较大,总碱性位数量较多,负载在其表面的Ru粒子粒径在2 nm左右,nBa∶nRu为1.0时,Ba-Ru(1∶1)/MgO-2催化剂表面的Ru物种易于还原,表面存在的弱碱性位极大地促进了氨合成活性,在400°C时活性达到15.40 L.g-1Ru.h-1(3.0 MPa,5 000 h-1),在相同反应条件下比Ba-Ru/MgO-1催化剂活性更高。  相似文献   

3.
氯化钌氨作前驱体制备高活性的氨合成催化剂   总被引:4,自引:0,他引:4  
以氯化钌和水合肼反应制备了新型的氧化钌氨前驱体Ru(NH3)5Cl3.透射电镜和CO化学吸附结果表明,由Ru(NH3)5Cl3前驱体制备的活性炭(AC)负载的RuN/AC催化剂中.钌纳米粒子分散度高,粒径分布均匀.与以氯化钌为前驱体制备的Ru/AC催化剂相比,RuN/AC催化剂具有更高的氨合成活性,在10 MPa和10 000 h-1条件下活性增幅超过10%.  相似文献   

4.
倪军 《分子催化》2013,(6):530-538
通过钌的络合物前驱体和硝酸钡的共浸渍制备的Ru Ba K/AC催化剂氨合成转化效率高,其氨合成转化频率在0.87~1.30 s-1之间,与氯化钌制备的Ru/AC催化剂相比,其转化频率提高幅度在26%~88%。共浸渍法制备的催化剂氨合成转化效率高,其主要原因可能是共浸渍法制备的催化剂钌粒子粒径分布区间较窄,易形成更多的活性位;钌表面氢的吸附受到抑制,氮更易活化,因而催化效率更高。  相似文献   

5.
柠檬酸对Ru/AC氨合成催化剂结构和活性的影响   总被引:1,自引:0,他引:1  
使用柠檬酸(CA)修饰石墨化活性炭(AC)和钌以改善Ru/AC催化剂中钌粒子的尺寸分布和催化剂的活性, 并通过透射电镜(TEM)、热重分析(TGA)、CO化学吸附和N2物理吸附等方法研究了柠檬酸对AC和Ru/AC催化剂织构、钌的分散度和催化剂的活性等性质的影响. 结果表明, 负载的柠檬酸优先吸附于活性炭微孔, 少量柠檬酸即可大幅度降低活性炭的比表面积, 增加活性炭表面含氧官能团的数量, 改善了钌粒子分布. 最佳负载顺序是柠檬酸和氯化钌依次负载. 在活性炭中添加适量的柠檬酸对催化剂的低温活性有显著影响. 柠檬酸处理后的Ru/AC催化剂活性最大提高幅度为21.4%.  相似文献   

6.
罗小军  王榕  倪军  林建新  魏可镁 《化学学报》2009,67(22):2573-2578
采用6种沉淀剂通过共沉淀法制备了6种Ru/CeO2氨合成催化剂, 考察了沉淀剂种类对其氨合成性能的影响. 通过X射线衍射、N2吸附-脱附、X射线荧光光谱和H2程序升温还原等表征手段, 对不同沉淀剂影响Ru/CeO2催化剂氨合成性能的原因进行探讨. 结果表明: 采用(NH4)2CO3和NH4HCO3制备的催化剂样品具有较好的氨合成活性, 其中NH4HCO3为最佳沉淀剂, 所制备的催化剂在450 ℃, 10 MPa , 10000 h-1测试条件下, 出口氨浓度为14.46%. 而采用KHCO3, KOH, K2CO3沉淀剂制备的样品的氨合成活性相对较低. 沉淀剂种类不仅明显地影响钌离子和铈离子的共沉淀, 而且会影响载体二氧化铈表面氧的还原. 由NH4HCO3沉淀剂制备的Ru/CeO2催化剂的高活性归因于钌负载量增大、钌粒子分散度提高以及二氧化铈表面氧易还原三者相互作用的结果.  相似文献   

7.
合成氨工业是国家能源与战略的基石,是化学工业的支柱产业,随着国家产业升级与转型,对合成氨工业的能耗提出了较为严厉的要求.钌基催化剂被誉为继铁催化剂后的第二代氨合成催化剂,与铁催化剂相比,钌基催化剂在低温和低压下具有优异的催化性能.炭材料因具有低成本、高比表面积以及电子传输和热传输等独特性能,比其它化合物如MgO,Al_2O_3和BN等更适合作为Ru催化剂的载体,而且也是除铁催化剂外唯一已工业化的载体.虽然炭负载钌催化剂的甲烷化是不可避免的,但BP公司使用石墨化碳作为载体成功地解决了这个问题,并实现了工业化.为了进一步提高钌基催化剂性能,对钌炭催化剂的结构设计尤为重要.中孔炭(MC)孔隙结构发达,可以为钌纳米粒子的分散提供空间,从而有效提高金属钌的利用率,中孔炭负载的钌基催化剂在合成氨反应中表现出优异的催化性能.传统负载型钌基催化剂的制备一般采用浸渍法,虽然可获得高分散的Ru纳米粒子,但其只会分布在载体的表面,因此在反应过程中就容易发生金属纳米粒子的团聚和流失,大大降低使用寿命.而随着新材料制备技术的发展,对催化剂的设计合成方法的研究也越来越多.当金属纳米粒子被镶嵌在载体的壁上时,金属和载体之间就具有较强的相互作用,因而可以稳定金属纳米粒子.本文通过蔗糖原位炭化法将Ru纳米颗粒半嵌入在炭材料中制备镶嵌式Ru-MC催化剂,并采用HRTEM, CO化学吸附等手段系统研究了镶嵌式Ru-MC催化剂与传统浸渍法制备的负载型Ru/MC催化剂之间的差异.采用等体积浸渍法添加Ba和K助剂制备催化剂Ba-K/Ru-MC和Ba-Ru-K/MC.和Ba-Ru-K/MC催化剂相比, Ba-K/Ru-MC催化剂上钌炭相互作用力增强,不但有效提高了钌催化剂的催化活性,而且提高了该催化剂的抗甲烷化能力,从而提高了氨合成条件下催化剂的稳定性和使用寿命.采用该方法制备的钌基催化剂在400°C, 10000 h~(-1), 10 MPa和H_2/N_2=3.0的反应条件下,氨合成反应速率可以达到133 mmol/(g·h),其性能远高于目前报导的钌基催化剂和传统的熔铁催化剂.  相似文献   

8.
来鲁华  张泽莹  邵美成 《化学学报》1992,50(10):978-982
三氢钌化物[(C~5H~5)Ru(PPh~3)H~3](1)经光解反应生成了一个双核钌氢化合物[(C~5H~5)Ru.(PPh~3)(μ-H)]~2(2).用X射线重原子法及Fourier迭代解出了2的晶体结构,其分子呈二聚形式,Ru-Ru键处在对称中心,两个钌原子间还通过两个桥氢原子相联,该二聚体的单体为16电子物种,与推测的碳氢键活化反应的中间体类似,为金属有机氢化物活化碳氢键的反应历程提供了证据.文中还给出了2的可能形成过程.  相似文献   

9.
本文采用原位合成法制备了钌/氮掺杂石墨烯(Ru/NGR)催化剂,并采用X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)等手段对催化剂的结构形貌进行了表征。将Ru/NGR催化剂应用于硼氢化钠水解制氢体系,考察了钌的负载量、硼氢化钠的浓度、反应温度等对硼氢化钠产氢的催化性能的影响。研究结果表明:当温度为25℃,硼氢化钠浓度为2 wt%,钌负载量为3.9%时,产氢速率可达32.95 L·(gRu·min)^-1。通过对Ru/NGR催化剂催化硼氢化钠水解反应动力学数据研究研究得出该催化剂的活化能为46 kJ·mol^-1。  相似文献   

10.
K对Ru/Sep负载型氨合成催化剂性能的影响   总被引:1,自引:1,他引:1  
用水溶液浸渍法制备了海泡石负载钌基氨合成催化剂,研究了钾助剂对催化剂性能的影响。通过N2物理吸附、H2化学吸附、SEM、XRD和XPS等手段表征了钾对催化剂比表面积、孔容、金属分散度、载体热稳定性能和电子效应等的影响。实验结果表明,钾助剂对海泡石负载钌基氨合成催化剂性能有较大的影响,加入适量的钾可抑制催化剂比表面积和孔容的降低,提高其热稳定性能,钌金属分散度随着K/Ru摩尔比的增加而增大,XPS表征结果表明,有电子从助剂向钌转移,随着钾含量的提高,电子结合能逐渐减小,至K/Ru摩尔比为10时最小,对催化剂活性评价结果表明,催化活性与催化剂电子授予能力有很好的一致性关系。  相似文献   

11.
以KF、KNO3、Ba(NO3)2、CsNO3为助剂前驱体,CeO2为载体采用氧化还原共沉淀法制备了一系列无氯负载型钌催化剂,考察了助剂种类和助剂含量及单双助剂对Ru/CeO2氨合成活性的影响,并采用N2物理吸附、CO脉冲吸附、XRD、XRF等表征手段,考察了助剂对Ru/CeO2催化剂比表面积、孔分布、钌分散度的影响。结果表明,F与碱金属、碱土金属一样可以促进Ru/CeO2催化剂的氨合成活性,四种单助剂中以CsNO3前驱体为助剂的促进效果最好,而对于双助剂Ba+Cs的促进效果最明显,在400℃,10 MPa,10 000 h-1反应条件下,出口氨浓度达到了13.3%。加入助剂后使各Ru/CeO2催化剂表面结构发生改变,但是催化剂的结构因素对氨合成活性的影响不明显,电子效应才是影响催化剂氨合成活性的主要因素。  相似文献   

12.
采用氧化还原共沉淀法制备了Ru/CeO2氨合成催化剂,并运用N2物理吸附、X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、CO吸附和H2程序升温还原(H2-TPR)等技术对其进行了表征,考察了沉淀时反应液的并流、反加、正加对所制备的Ru/CeO2催化剂氨合成性能的影响.结果表明,不同沉淀方式所得到的催化剂,催化剂的表面织构和金属钌的分散度都存在明显的差别,最终影响了催化剂的氨合成活性,其中采用反加法制备的催化剂上钌的分散度(45.6%)和还原性最好,比表面积最大(120 m2/g),因而催化活性最高,在10 MPa,10000 h?1,425℃反应时,出口NH3浓度达到12.6%.  相似文献   

13.
采用氧化-还原共沉淀法制备了Pr掺杂的Ru/CeO2-PrO2氨合成催化剂,并运用N2物理吸附、X射线粉末衍射、H2程序升温还原、CO化学吸附、N2程序升温脱附、场发射扫描电镜、高分辨透射电镜和X射线光电子能谱等技术对其进行了表征,考察了Pr添加量对催化剂表面结构和性能的影响.结果表明,Pr掺杂对Ru/CeO2催化剂的比表面积和Ru分散度都有所影响.当CeO2中Pr掺杂量为4%时,在425oC,10MPa,10000h–1的反应条件下,氨合成转化频率可达到12.13×10–2s–1,较Ru/CeO2催化剂提高了58%,这主要归结于复合材料电子传导性能的提高.  相似文献   

14.
Ru/SBA-15催化剂具有高的氢气活化能力,因此被广泛应用在加氢和氢解反应中.一般认为Ru/SBA-15催化剂的高活性与金属Ru的高分散有关,然而有研究发现在氧化硅载体上还存在溢流的氢,这部分溢流氢也很可能参与加氢和氢解反应.这就产生了两个关键性的问题:(1)Ru/SBA-15的催化加氢活性中心是什么,是金属Ru还是载体SBA-15;(2)在金属Ru上解离的H是如何迁移到载体上的.因此,加氢活性位点及其形成机理的确认对理解Ru/SBA-15催化剂的高活性至关重要.原位红外光谱可从分子层面研究在工作状态的催化剂表面活性位点的状态,进而推测可能的反应机理.通过与催化剂Pd/SBA-15,Ru/Al2O3和SBA-15比较发现,在氢气氛围中Ru/SBA-15催化剂的原位红外谱图中存在一个独特的位于1996 cm?1的峰.由于在Pd/SBA-15,Ru/Al2O3和SBA-15上都不存在这个峰,因此该峰的形成是金属Ru和SBA-15相互作用的结果.此外,Si–O键在位于1866 cm?1的合频峰不随氢气氛围变化而变化,因此可排除这个峰属于Si–O键振动的倍频峰.为了排除该峰的产生是由于CO的吸附,我们采用脉冲引入CO的方法,发现在低的CO覆盖率下,红外谱图中位于2068 cm?1处出现了一个CO在Ruδ+上的线性吸附峰.随着CO覆盖率增加,该峰逐渐蓝移至2075 cm?1,同时位于2132 cm?1处的峰强度增强了,这两个峰都归属于Run+(CO)x物种的振动峰.这些CO的化学吸附强度都很高,即使在He气中吹扫1 h后仍然存在,而1996 cm?1峰的形成是可逆的.此外,低CO覆盖率下生成的吸附峰(2068 cm?1)的强度低于1996 cm?1峰的强度,因此可以排除1996 cm?1峰属于CO吸附峰的可能.既然1996 cm?1峰的形成是可逆的,将这个峰归属于载体上氢的可能性也可排除,因为形成载体上氢的过程是不可逆的.另外,形成1996 cm?1峰的速率还证明了这个峰不属于金属Ru上吸附的氢,因为金属Ru上氢的吸附是很快的.通过以上分析,我们推断1996 cm?1峰应该指认为在Ru和SBA-15界面处位点的红外峰.为了证明这一点,我们制备了不同Ru负载量的Ru/SBA-15催化剂,发现这个界面处位点峰的峰面积与金属Ru颗粒在载体上形成交界面的周长成正比,而峰达到稳态所需时间与Ru颗粒大小成反比.这说明H2在金属Ru上发生解离吸附后迁移到Ru和SBA-15界面处,形成了Ru–H–Si物种.当金属Ru的颗粒比较小时,与载体形成交界面的周长小,Ru–H–Si物种的数量少,体现在红外谱图上峰的峰面积小,但解离的氢迁移到该界面所需时间变短了.当金属Ru的颗粒比较大时,与载体形成交界面的周长大,Ru–H–Si物种的数量多,1996 cm?1峰的峰面积大,但解离氢的迁移慢了.此外,H-D交换实验还证明这个界面处的位点具有加氢活性.与文献报道的孤立Si–H物种的红外峰位置比较发现,Ru–H–Si物种具有明显的峰红移现象,说明该物种中的Si–H键活性很高,这可能是由于金属Ru将电子转移至Si–H键的结果.总之,以上结果清晰地表明这个1996 cm?1峰归属为结构是Ru–H–Si的活性位点.  相似文献   

15.
用密度泛函理论研究了氢原子的污染对于Ru(0001)表面结构的影响. 通过PAW(projector-augmented wave)总能计算研究了p(1×1)、p(1×2)、(3^(1/2)×3^(1/2))R30°和p(2×2)等几种氢原子覆盖度下的吸附结构, 以及在上述结构下Ru(0001)面fcc(面心立方)格点和hcp(六方密堆)格点的氢原子吸附. 所得结果表明, 在p(1×1)-H、p(1×2)-H、(3^(1/2)×3^(1/2))R30°-H和p(2×2)-H几种H原子覆盖度下, 以p(1×1)-H结构单个氢原子吸附能为最大. 在p(1×1)-H吸附结构下,由于氢原子吸附导致的Ru(0001) 表面第一层Ru 原子收缩的理论计算数值分别为-1.11%(hcp 吸附)和-1.55%(fcc 吸附), 因此实际上最有可能的情况是两种吸附方式都有一定的几率. 而实验中观察到的“清洁”Ru(0001)表面实际上是有少量氢原子污染的表面. 不同覆盖度和氢分压下氢原子吸附的污染对Ru(0001)表面结构有极大的影响,其表面的各种特性都会随覆盖度的不同而产生相应的变化.  相似文献   

16.
A series of 3 wt% Ru embedded on ordered mesoporous carbon (OMC) catalysts with different pore sizes were prepared by autoreduction between ruthenium precursors and carbon sources at 1123 K. Ru nanoparticles were embedded on the carbon walls of OMC. Characterization technologies including power X-ray diffraction (XRD), nitrogen adsorption-desorption, transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H2-TPR) were used to scrutinize the catalysts. The catalyst activity for Fischer-Tropsch synthesis (FTS) was measured in a fixed bed reactor. It was revealed that 3 wt% Ru-OMC catalysts exhibited highly ordered mesoporous structure and large surface area. Compared with the catalysts with smaller pores, the catalysts with larger pores were inclined to form larger Ru particles. These 3 wt% Ru-OMC catalysts with different pore sizes were more stable than 3 wt% Ru/AC catalyst during the FTS reactions because Ru particles were embedded on the carbon walls, suppressing particles aggregation, movement and oxidation. The catalytic activity and C5+ selectivity were found to increase with the increasing pore size, however, CH4 selectivity showed the opposite trend. These changes may be explained in terms of the special environment of the active Ru sites and the diffusion of products in the pores of the catalysts, suggesting that the activity and hydrocarbon selectivity are more dependent on the pore size of OMC than on the Ru particle size.  相似文献   

17.
《中国化学快报》2020,31(9):2512-2515
Ru and Co are highly dispersed on the surface of TiO2 nanoparticles with an easy coprecipitation method to fabricate a novel Ru-based catalyst (Ru/Co-TiO2). The fabricated Ru/Co-TiO2 catalyst exhibits superior catalytic performance for promoting NaBH4 hydrolysis in alkaline medium, showing an impressive hydrogen generation rate per gram Ru as high as 172 L min−1 gRu-1, which is better than most of recently reported Ru-based catalysts. In addition, the fabricated Ru/Co-TiO2 catalyst also shows excellent durability in cycle use, with only 2.9% activity loss after being used for 5 cycles. These advantages make the developed Ru/Co-TiO2 catalyst a potential choice for promoting hydrogen generation from NaBH4 hydrolysis.  相似文献   

18.
双结构助剂对Ru/AC氨合成催化剂稳定性的影响   总被引:1,自引:1,他引:0  
倪军 《分子催化》2013,27(4):371-376
在高温高压条件下,单结构助剂的Ru-Ba-K/AC氨合成催化剂热稳定性较差,少量钐助剂的添加能显著的改善催化剂的稳定性.研究结果表明,在Ru-Ba-K/AC体系中,钐的添加量为0.5%时,钐的添加对催化剂活性影响很小,但稳定性显著增强;钐助剂的添加量超过1%以后,催化剂的稳定性进一步增强,但催化剂的活性显著下降.催化剂稳定性提高的主要原因可能是Sm掺杂显著提高催化剂结构助剂的抗烧结能力,而且钐的添加抑制了钌表面的氢吸附,提高了炭载体抗甲烷化能力.  相似文献   

19.
Hexamethylenediamine(HMDA) is an important reagent for the synthesis of Nylon-6,6, and it is usually produced by the hydrogenation of adiponitrile using a toxic reagent of hydrocyanic acid. Herein, we developed an environmental friendly route to produce HMDA via catalytic reductive amination of 1,6-hexanediol(HDO) in the presence of hydrogen. The activities of several heterogeneous metal catalysts such as supported Ni, Co, Ru, Pt, Pd catalysts were screened for the present reaction in supercritical ammonia without any additives. Among the catalysts examined, Ru/Al_2O_3 presented a high catalytic activity and highest selectivity for the desired product of HMDA. The high performance of Ru/Al_2O_3 was discussed based on the Ru dispersion and the surface properties like the acid-basicity. In addition, the reaction parameters such as reaction temperature,time, H_2 and NH_3 pressure were examined, and the reaction processes were discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号