首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
应用X射线荧光光谱法测定了锰矿中主元素锰、铁、硅、钙和微量元素镁、铝、磷、硫、钛、钾、钠等11种元素.试样用四硼酸锂和碳酸锂混合熔剂融熔制成玻璃状熔片并加入碘化铵溶液作为脱模剂.以17个标准样品并结合6个自制标准样品建立校准工作曲线,用理论a系数校正基体效应.对该方法的精密度进行了考核,结果表明以上11种元素测定结果的相对标准偏差均小于4%.用3种标准样品对该方法的准确度进行验证,测定值与标准值相吻合.  相似文献   

2.
X-射线荧光光谱法测定锆矿石中锆硅铁钛铝钙   总被引:1,自引:0,他引:1  
采用熔片法制样,建立了X-射线荧光测定锆矿石中锆、硅、铁、钛、铝、钙的分析方法。使用国家一级标准物质与二氧化锆混合配制的混合标准物质,解决了锆矿石标准物质不足的问题。试样:硼酸锂混合熔剂为1:20,在熔样机中熔成玻璃片,采用经验系数法和散射线内标法校正元素间的谱线重叠效应和基体效应,对标准物质和混配的标准样品进行了分析,标准物质测定结果与推荐值一致,相对标准偏差(RSD%)均小于3.6%。方法能满足高含量锆矿石中主、次量元素的测定。  相似文献   

3.
在铂金坩埚中依次加入4.000 0g无水四硼酸锂,0.250 0g试样,0.250 0g钴内标试剂,搅拌均匀,再用3.000 0g无水四硼酸锂覆盖在表面,加入1 000g·L-1溴化锂溶液0.25mL后,在电加热自动熔样机中于650℃预氧化10min后,在1 080℃前置2min,熔融17min,后置3min制得熔片,在所选仪器工作条件下测定煤灰中主次成分的含量。选用12份经国家标准方法定值的煤灰样品和两份铁矿石标准样品作为校准样品绘制标准曲线,采用经验系数法和理论α系数法对曲线进行基体校正和谱线重叠干扰校正。采用试验方法对煤灰样品中各组分进行测定,所得结果和标准方法测得值一致,测定值的相对标准偏差(n=11)在0.23%~5.3%之间。  相似文献   

4.
在铂金坩埚中依次加入4.000 0g无水四硼酸锂,0.250 0g试样,0.250 0g钴内标试剂,搅拌均匀,再用3.000 0g无水四硼酸锂覆盖在表面,加入1 000g·L-1溴化锂溶液0.25mL后,在电加热自动熔样机中于650℃预氧化10min后,在1 080℃前置2min,熔融17min,后置3min制得熔片,在所选仪器工作条件下测定煤灰中主次成分的含量。选用12份经国家标准方法定值的煤灰样品和两份铁矿石标准样品作为校准样品绘制标准曲线,采用经验系数法和理论α系数法对曲线进行基体校正和谱线重叠干扰校正。采用试验方法对煤灰样品中各组分进行测定,所得结果和标准方法测得值一致,测定值的相对标准偏差(n=11)在0.23%~5.3%之间。  相似文献   

5.
X射线荧光光谱法测定氧化铝中杂质元素   总被引:4,自引:0,他引:4  
应用X-射线荧光光谱法测定了氧化铝中11种杂质成分(SiO2,Fe2O3,Na2O,K2O,CaO,TiO2,P2O5,ZnO,V2O5,Ga2O3,Cr2O3)。试样用四硼酸锂和偏硼酸锂作混合熔剂融熔制成玻璃状片形熔块。通过在高纯氧化铝中加入一定量的上述11种元素的纯氧化物配制成中间标准样品,并用此中间标准样品和纯氧化铝作为空白试样组成高、低标,制备了校正曲线。又用此中间标准样品与纯氧化铝按一定比例配制控制样品对分析过程进行质量控制。对所提出方法的精密度进行了考核,结果表明以上11种杂质成分测定结果的RSD值均小于10%。用4种标样对此方法的准确度进行验证,结果表明所得测定值与已知值之间的误差均符合标准规定。  相似文献   

6.
采用镁砂标准样品作为校准样品,建立了熔融制样X射线荧光光谱法测定镁砂中MgO,Al2O3,SiO2,CaO,P2O5,Fe2O3的方法。采用熔融法为样品片和校准片的制备方法,选择四硼酸锂-偏硼酸锂(67+33)为助熔剂,1.00mL LiBr溶液为脱模剂,熔融温度为1 100℃,熔融时间20min。对镁砂样品测定的相对标准偏差(RSD)小于3%,对不同镁砂标准样品进行测定,方法的测定结果与认证值相吻合。  相似文献   

7.
采用镁砂标准样品作为校准样品,建立了熔融制样X射线荧光光谱法测定镁砂中MgO,Al2O3,SiO2,CaO,P2O5,Fe2O3的方法。采用熔融法为样品片和校准片的制备方法,选择四硼酸锂-偏硼酸锂(67+33)为助熔剂,1.00mL LiBr溶液为脱模剂,熔融温度为1 100℃,熔融时间20min。对镁砂样品测定的相对标准偏差(RSD)小于3%,对不同镁砂标准样品进行测定,方法的测定结果与认证值相吻合。  相似文献   

8.
建立熔融制样-X射线荧光光谱法(XRFS)同时测定硅酸盐岩和煤灰中13种主次量成分(二氧化硅、三氧化二铝、三氧化二铁、氧化钠、氧化钾、氧化钙、氧化镁、二氧化钛、五氧化二磷、氧化锰、氧化钡、五氧化二钒和三氧化硫等)的方法。将样品研磨、过筛、干燥,以质量比为1∶10的比例称取样品和混合熔剂(四硼酸锂和偏硼酸锂的质量比为67∶33),在700℃熔样炉中开炉门预氧化2 min,于1 100℃熔融9 min,所得样片在优化的XRFS条件下测定。采用与样品基体接近的标准物质和标准样品制作校准曲线,并采用β系数法及可变理论α系数与经验α系数相结合的方法分别对结果进行谱线重叠效应和基体效应校正。结果显示:各氧化物的校准曲线的相关系数均大于0.994 0,检出限为0.001 0%~0.015 1%。方法用于分析标准物质,测定值的相对标准偏差(n=12)均小于5.0%,测定值和认定值的相对误差均小于10%。采用此方法与GB/T 14506-2010中化学法分析硅酸盐岩、煤灰样品,所得测定值基本一致。  相似文献   

9.
提出了用X射线荧光光谱法测定铝合金中镁、硅、钛、锰、铁、镍、铜、锌、铅等9种元素。样品0.2000g置于聚四氟乙烯杯中用200g·L~(-1)氢氧化钠溶液5mL溶解后,加硝酸10mL酸化,将溶液移入已盛有4.000g熔剂(四硼酸锂、偏硼酸锂与氟化锂以4.5比1比0.4的质量比混合)的铂金坩埚中,低温蒸干,并加热熔融制成厚度为2.5mm的玻璃状熔片,供X射线荧光光谱法分析用。该方法可适用于不同牌号、不同铸造或锻造热处理状态的铝合金样品分析。按该方法分析了4个标准样品,其测定结果与标准值相吻合。用一个铝合金标准物质(牌号ZLD 108)制备10个样片并测量,各元素相对标准偏差在0.62%~2.7%之间。  相似文献   

10.
用熔融制样法将钒铁合金样品在铂金坩埚中与四硼酸锂和偏硼酸锂熔融,熔体在铂金坩埚中自动成型,用X射线荧光光谱法测定钒铁合金中钒、硅、锰、铝和磷等主次元素含量。经试验求得熔融时,四硼酸锂、混合溶剂(四硼酸锂∶偏硼酸锂=67∶33)和样品的最佳质量比为30比5比1。各元素的检出限在12.4~51.2μg.g-1之间。方法用于标准样品分析,测定值与认定值相符。  相似文献   

11.
应用熔融制样-X射线荧光光谱法测定了直接还原铁中主次元素的含量。样品置于铂金坩埚中,以四硼酸锂和偏硼酸锂为熔剂于1 050℃熔融20min,将熔化的样品倒入铂金模具中,所制得的片样用于X射线荧光光谱分析。以铁矿石标准物质GBW 07221等25种标准物质制作校准曲线,以固定理论α影响系数法校正基体效应。方法用于实际样品的分析,所得结果与其他方法测定值相符。测定值的相对标准偏差(n=10)在0.31%~16%之间。  相似文献   

12.
采用熔融制样-X射线荧光光谱法测定铁矿石中钾、铅、锌和砷的含量。样品以四硼酸锂和碳酸锂为熔剂,在1 050℃下熔融20min,冷却后制成玻璃融片,用于X射线荧光光谱分析,以标准物质制作校准曲线。方法应用于铁矿石标准样品(GSB 1805-2005)的测定,测定值与认定值相符,测定值的相对标准偏差(n=10)在2.0%~4.5%之间。  相似文献   

13.
在锰矿的X-射线荧光光谱分析中应用理论a系数法对其基体效应作了校正,从而使锰矿中主要及次要组分(包括Mn、Fe、MgO、Al2>O3>、SiO2>、P、S、K2>O、CaO、TiO2>、NiO、Cu、Zn及BaO等14项)的测定结果与所分析的标准物质的证书值相符.锰矿样品用四硼酸锂熔融,所得熔片用于X-射线荧光光谱分析.此外还发现,由直接灼烧锰矿试样所测得的灼烧损失值与由锰矿与四硼酸锂一起灼烧所测得的值不同且常小于后者.基于这一事实,提出了由灼烧锰矿与四硼酸锂混合物的条件下测定灼烧损失的方法,测得制备锰标准曲线的标准偏差为0.08%;测定一种矿样中锰量时其结果的相对标准偏差(n=11)为0.19%.  相似文献   

14.
建立了熔融制样-X射线荧光光谱法(XRFS)同时测定白云石中氧化钙、氧化镁、二氧化硅、三氧化二铝、三氧化二铁、二氧化钛、氧化钾、氧化钠、五氧化二磷含量的方法。称取混合熔剂(由质量比67∶33的四硼酸锂和偏硼酸锂混合而成) 6.000 0 g,先将一半熔剂倒入铂-金坩埚中,然后加入碘化铵0.2 g和干燥好的样品0.900 0 g,混匀后,再将剩余的混合熔剂覆盖在表面,在1 000℃熔融12 min,得到的玻璃样片供XRFS分析。以标准物质、光谱纯试剂和基准试剂混合熔融制备校准用标准样品系列,以经验α系数法进行基体校正和谱线重叠效应校正。结果显示:校准曲线的相关系数为0.993 8~1.000,检出限为9.31~129.1μg·g~(-1);对实际样品进行单天内重复测定11次和11天的重复测定,测定值的相对标准偏差(RSD)不大于6.0%和10%;对11个平行制备的样品进行单天和11天连续测定(每天1个样品),测定值的RSD不大于7.0%和8.0%;方法用于分析标准物质和实际样品,测定值和认定值或按GB/T 3286-2012所得测定值的误差均在GB/T 3286-2012的允许差范围内。  相似文献   

15.
石膏在我国储量丰富,应用广泛,快速准确分析其成分含量对石膏资源的综合利用具有重要意义。针对酸溶法无法测定SiO2,碱熔法无法测定K2O、Na2O的问题,本文建立一种偏硼酸锂-四硼酸锂熔融-电感耦合等离子体发射光谱法同时测定石膏中CaO、SO3、Al2O3、Fe2O3、MgO、TiO2、K2O、Na2O、SiO2含量。实验优化了熔剂用量、熔融温度,结果表明采用试样与偏硼酸锂-四硼酸锂混合熔剂质量比例1:5,在铂金坩埚中1000 ℃熔融10 min,在超声条件下,于50 mL 10 %盐酸中浸取熔融物,能够有效分解试样而浸取待测组分。向标准溶液系列中加入偏硼酸锂-四硼酸锂-盐酸基体溶液以消除基体对测试结果的影响。各待测组分的校准曲线的相关性系数均大于0.9990,方法检出限在3~292 μg/g范围内;采用实验方法分别对国家一级标准物质GBW03109a、GBW03110和实际样品进行测定,标准物质的5次平行测试的相对标准偏差在0.14 %~8.86 %之间,测定结果的相对误差在0.03~8.75 %之间,测试结果与标准值无显著性差异;实际样品中各成分测定值的RSD(n=5)为0.24~8.80 %。该方法操作简单、准确度高、精密度好、检出限低,可以同时测定石膏中的多组分含量,能够为石膏资源综合利用调查评价提供一定的技术支撑 。  相似文献   

16.
应用X射线荧光光谱法测定了锌精矿中主次量组分(包括锌、硫、铁、硅、铅、铜、砷、银、镉、锡及锑)。锌精矿样品(0.6g)与6.3g四硼酸锂和3.2g硝酸锂置于铂-金坩埚中拌匀,先在500℃随即升至700℃灼烧10min,使样品中的硫离子预氧化为硫酸盐。硝酸锂与四硼酸锂生成四硼酸锂和偏硼酸锂混合物熔剂,在1 030℃熔融样品10min,将熔化的样品倒入样模中,冷却后脱模所得熔块用于X射线荧光光谱分析。对在预氧化及熔融过程中由于样品组成变化及质量的增加所造成的基体干扰,采用基于Sherman方程的可变理论α影响系数法进行校正。在所测定的元素中,锌和硫的校准曲线范围依次为27%~62%和10%~35%,两者的标准偏差均小于0.2%。应用所提出的方法分析了2个CRM(GBW 07168和SRM 113b),所得测定值与认定值一致。  相似文献   

17.
铷矿石和混合熔剂按照一定的质量比混配好,在熔样机中制备成待分析的样品,混合熔剂由四硼酸锂+偏硼酸锂+氟化锂按照一定比例混合而成,用国家标准物质不同质量的稀释或者添加纯物质的办法制备成一个系列的含不同氧化如的标准系列样片,采用X荧光光谱仪直接测试氧化铷的含量。该分析方法具有检测范围广,从0.01%到5.0%,精密度RSD达到1.50%、国家一级标准准确度高的优点,同时对标准样品的种类要求少,而通过某一标准物质来制备校正曲线也可以克服基体效应的影响。该方法适应于稀有矿石类标准物质数量和种类矿石不多的分析。  相似文献   

18.
锌精矿属富锌、高铜、高铅的硫化矿矿物,硫和铜等元素腐蚀铂金坩埚是熔融制样-X射线荧光光谱分析必须解决的问题。在阶梯温度下,以硝酸铵、硝酸钠和硝酸锂的三元硝酸盐混合物为氧化剂,采用半熔法预氧化试料中的硫、铜、锌等元素,以四硼酸锂-偏硼酸锂混合熔剂(m:m=67∶33)为熔剂、过饱和溴化锂溶液为脱模剂,于1 050℃熔铸成XRF分析用试料片,波长色散X射线荧光光谱仪测定试料片中的锌、铜、铅、铁、铝、钙和镁含量。以系列铜、铅、锌的硫化矿及其精矿有证标准物质和工作基准试剂氧化锌作为标准试料建立待测组分的校准曲线,各待测组分的校准曲线的相关系数在0.988 5~0.997 8;方法检出限为0.018%~0.50%。对不少于3个水平的待测组分进行实验室内重复性实验,其相对标准偏差(RSD,n=11)在0.41%~3.9%,除个别分析结果外,测定结果与标准方法的测定结果无显著性差异;经t-检验,锌精矿标准物质中铅和铁测定值与标准值无显著性差异,而锌测定结果与标准值存在显著性差异;除个别水平样品的锌含量、铁含量、钙含量测定值外,测定值与标准方法的测定值无显著性差异。8个实验室对不少于3个水平的待测组分进行5次独立测定,确定了校准曲线测定范围内的方法重复性限和再现性限。  相似文献   

19.
采用熔融制样,以四硼酸锂-偏硼酸锂混合熔剂(12:22)作为熔样体系,硝酸锂和碘化铵分别作为氧化剂和脱模剂,建立了石灰石及白云石中Ca,M g,Al,Fe,K,M n,Na,Si,Ti,P,S等11种元素的熔片制样-波长色散X射线荧光光谱法。选择石灰石、白云石有证标准物质及碳酸钙基准物质,并将其按一定比例人工配制成系列标样,建立了检测的校准样品体系。采用较大的稀释比与未知烧失量校正相结合的办法,无需对样品烧失量进行校正,简化了分析步骤。应用变化的理论α系数法校正,有效克服基体效应的影响。精密度实验表明,各组分测定结果的相对标准偏差在0.22%~9.0%(n=11)之间。选择石灰石和白云石标准物质进行准确度实验,测试结果与标示值一致。  相似文献   

20.
采用四硼酸锂+偏硼酸锂复合熔剂,高频熔融炉熔融,硝酸浸取方式溶解萤石,用已知含量萤石标准物质制作标准工作曲线,用ICP-AES法联合测定萤石中钾、钠、硅、铁、磷组分含量。选择两条谱线进行分析,方法检出限在0.001~0.22mg/L,样品检测5次的相对标准偏差小于9.3%,测定值与证书值相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号