首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
《Analytical letters》2012,45(15):2460-2473
Abstract

The direct electrochemistry of hemoglobin (Hb) was realized on chitosan and multiwalled carbon nanotubes (MWCNTs)–modified carbon ionic liquid electrode (CILE). The CILE was fabricated first and further modified by MWCNTs to get an electrode as MWCNTs/CILE. The Hb was immobilized on the surface of MWCNTs/CILE with the help of chitosan film. Ultraviolet–visible (UV-vis) and Fourier transform–infrared (FT-IR) spectra indicated that Hb kept its native structure in the modified film. A pair of well-defined quasi-reversible redox peaks of heme Fe(III)/Fe(II) couple appeared with the formal potential (E0′) as ?0.314 V (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The modified electrode showed good electrocatalytic ability for the reduction of trichloroacetic acid.  相似文献   

2.
A novel ionic liquid, 1-(ferrocenyl butyl)-3-methylimidazolium tetrafluoroborate (Fc-IL), was synthesised. The nanocomposite of Fc-IL and multi-walled carbon nanotubes (MWCNTs) was constructed and used for surface modification of carbon-ceramic electrode. The modified electrode was applied to the determination of hydrazine. Operational parameters such as pH of the solution, ionic liquid volume and amount of carbon nanotubes, which affect the analytical performance of the modified electrode, were optimised. The linear range of the modified electrode toward hydrazine concentration was 0.96–106.10 μg L–1 with a detection limit of 0.64 μg L–1 (S/N = 3). The modified electrode displayed high repeatability, reproducibility, long-term life time and low response time (<3 s). The applicability of this method was further tested by analysing the hydrazine content in boiler-feed water samples containing different concentrations of hydrazine and the results were in good agreement with the spectrophotometry method.  相似文献   

3.
Through the functionalization of multiwalled carbon nanotubes (MWCNTs) by 0,0′‐diallylbisphenol A (DBA), the interface situation between MWCNTs and bismaleimide (BMI) was improved, as detected by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA). The improved interface situation was considered to be the main reason for the huge increased microhardness value and greatly improved the microtribological property of MWCNTs/BMI composites. Besides, the wear mechanism for the composite was also believed to be related to the interfacial situation. The rough wavelike worn surface of pure BMI resin is attributed to its poor load capacity. The smoother waterfall‐shape worn surface of MWCNTs/BMI is related to the interface formed by the addition of MWCNTs while the ultrasmooth worn surface of DBA modified MWCNTs/BMI is due to the greatly improved interfacial interaction of the composite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Carbon nanomaterials such as carbon nanotubes (CNTs), graphene and their hybrid have been studied extensively. Despite having excellent properties of CNTs and graphene have not yet been fully realized in the polymer composites. During fabrication agglomeration of CNTs and restacking of graphene is a serious concern that results in the degradation of properties of nanomaterials into the final composites. To improve the dispersion of CNTs and restacking graphene, in the present research work, we focused on the hybridization of graphene oxide and CNTs. Multiwalled carbon nanotubes (MWCNTs), functionalized carbon nanotubes (FCNTs), and graphene oxide-carbon nanotubes (GCNTs) reinforced acrylonitrile butadiene styrene (ABS) composites were prepared separately by vacuum filtration followed by hot compression molding. Further, dynamic mechanical analysis (DMA), and electromagnetic interference (EMI) shielding properties of ABS composites reinforced carbon nanofillers were investigated. The dynamic mechanical properties of polymers strongly depend on the adhesion of fillers and polymer, entanglement density of polymer chains in the presence of carbon fillers. The dynamic mechanical characteristics such as storage, loss modulus, and damping factor of prepared composites were significantly affected by the incorporation of MWCNTs, FCNTs, and GCNTs. Maximum EMI shielding effectiveness of −49.6 dB was achieved for GCNT-ABS composites which were highest compared to MWCNTs-ABS composites (−38.6 dB) and FCNTs-ABS composites (−36.7 dB) in the Ku band (12.4–18 GHz). These results depict the great potential of GCNTs-ABS composites to be used in various applications of efficient heat dissipative EMI shielding materials for electronic devices.  相似文献   

5.
In this work, the electrochemical behavior of ferrocene (Fc) was investigated by cyclic voltammetry (CV) in room temperature ionic liquids (RTILs) of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) on glass carbon (GC), edge plane pyrolytic graphite (EPPG) and multi‐walled carbon nanotube (MWCNTs)‐modified EPPG electrodes, respectively. The results demonstrated that on GC electrode, pairs of well‐defined reversible peaks were observed, while for the electrode of EPPG, the peak potential separation (ΔEp) is obviously larger than the theoretical value of 59 mV, hinting that the electrode of EPPG is distinguished from the commonly used electrode, consistent with the previous proposition that EPPG has many “defects”. To obtain an improved electrochemical response, multi‐walled carbon nanotubes (MWCNTs) were modified on the electrode of EPPG; the increased peak current and promoted peak potential separation not only proved the existence of “defects” in MWCNTs, but also supported that “creating active points” on an electrode is the main contribution of MWCNTs. Initiating the electrochemical research of Fc on the MWCNTs‐modified EPPG electrode in RTILs and verifying the presence of “defects” on both EPPG and MWCNTs using cyclic voltammograms (CVs) of Fc obtained in RTILs of EMIBF4, is the main contribution of this preliminary work.  相似文献   

6.
In this study, an electrochemically enhanced solid-phase microextraction (EE-SPME) approach based on molecularly imprinted polypyrrole/multi-walled carbon nanotubes (MIPPy/MWCNTs) composite coating on Pt wire was developed for selective extraction of fluoroquinolone antibiotics (FQs) in aqueous samples. During the extraction, a direct current potential was applied to the MIPPy/MWCNTs/Pt fiber as working electrode in a standard three-electrode system, FQ ions suffered electrophoretic transfer to the coating surface and then entered into the shape-complimentary cavities by hydrogen-bonding and ion-exchange interactions. After EE-SPME extraction, the fiber was desorbed with desorption solvent for high-performance liquid chromatography (HPLC) analysis. Some parameters influencing EE-SPME extraction such as applied potential, extraction time, solution pH, ionic strength, and desorption solvent were optimized. EE-SPME showed good selectivity and higher extraction efficiency to FQs compared with that of traditional solid-phase microextraction. EE-SPME coupled with HPLC to determine FQs in water samples, the limits of detection (S/N = 3) for the selected FQs are 0.5–1.9 μg L−1. The proposed method was successfully used to the analysis of FQs spiked urine and soil samples, with recoveries of 85.1–94.2% for the urine samples and 89.8–95.5% for the soil samples.  相似文献   

7.
In this work, a glassy carbon electrode (GCE) was modified with multiwall carbon nanotubes/ionic liquid/graphene quantum dots (MWCNTs/IL/GQDs) nanocomposite. Then, the nanocomposite was decorated with nickel‐cobalt nanoparticles (Ni?Co NPs), and it was used as a non‐enzymatic glucose sensor. Field emission scanning electron microscopy, X‐ray diffraction spectroscopy, and energy dispersive spectroscopy were employed to prove the electrodeposition of the Ni?Co NPs on the surface of MWCNTs/IL/GQDs/GCE. Also, cyclic voltammetric and amperometric methods were utilized for the investigation of the electrochemical behaviour of the Ni?Co NPs/MWCNTs/IL/GQDs/GCE for glucose oxidation. The novel amperometric sensor displayed two linear ranges from 1.0 to 190.0 μmol L?1 and 190.0 to 4910 μmol L?1 with a low detection limit of 0.3 μmol L?1 as well as fast response time (2 s) and high stability. Also, the sensor showed good selectivity for glucose determination in the presence of ascorbic acid, citric acid, dopamine, uric acid, fructose, and sucrose, as potential interference species. Finally, the performance of the proposed sensor was investigated for the glucose determination in real samples. Ni?Co NPs/MWCNTs/IL/GQDs/GCE showed good sensitivity and excellent selectivity.  相似文献   

8.
A new composite electrode has been fabricated based on coating multi‐walled carbon nanotubes (MWCNTs) and n‐octylpyridinum hexafluorophosphate (OPPF6) ionic liquid composite on a glassy carbon (GC) electrode (OPPF6‐MWCNTs/GCE). This electrode shows very attractive electrochemical performances for electrooxidation of risperidone (RIS) compared to conventional electrodes using carbon and mineral oil, notably improved sensitivity and stability. The oxidation peak potentials in cyclic voltammogram of RIS on the OPPF6‐MWCNTs/GCE was occurred around 230 mV vs. SCE at Britton–Robinson (B–R) buffer (pH 4.0) at scan rate of 100 mV s?1. The electrochemical parameters such as diffusion coefficient (D), charge transfer coefficient (α) and the electron transfer rate constant (k/s) were determined using cyclic voltammetry. Under the optimized conditions, the peak current was linear to risperidone concentration over the concentration range of 10–200 nM with sensitivity of 0.016 μA/nM?1 using differential pulse voltammetry. The detection limit was 6.54 nM (S/N = 3). The electrode also displayed good selectivity and repeatability. In the presence of clozapine (CLZ) the response of RIS kept almost unchanged. Thus this electrode could find application in the determination of RIS in some real samples. The analytical performance of the OPPF6‐MWCNTs/GCE was demonstrated for the determination of RIS in human serum and pharmaceutical samples.  相似文献   

9.
The present work demonstrates that simultaneous determination of adrenalin (AD) and paracetamol (PAR) can be performed on single‐walled carbon nanotube/chitosan/ionic liquid modified glassy carbon electrode (SWCNT‐CHIT‐IL/GCE). The electro‐oxidations of AD and PAR were investigated with cyclic voltammetry (CV), differential pulse voltammetry (DPV) and also chronoamperometry (CA) methods. DPV experiments showed that the oxidation peak currents of AD and PAR are proportional to the corresponding concentrations over the 1–580 μmol/L and 0.5–400 μmol/L ranges, respectively. The RSD at a concentration level of 15 μmol/L AD and 15 μmol/L PAR were 1.69% and 1.82%, respectively. Finally the modified electrode was used for simultaneous determination of AD and PAR in real samples with satisfactory results.  相似文献   

10.
Tunable polymerization of ionic liquid on the surfaces of multi-walled carbon nanotubes (MWCNTs) was achieved by a mild thermal-initiation-free radical reaction of 3-ethy-1-vinylimidazolium tetrafluoroborate in the presence of MWCNTs. Successful modification of polymeric ionic liquid (PIL) on MWCNTs surfaces (PIL-MWCNTs) was demonstrated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The resulting PIL-MWCNTs possessed unique features of high dispersity in aqueous solution and tunable thickness of PIL layer, due to positive imidazole groups along PIL chains and controllable ionic liquid polymerization by tuning the ratio of precursor. Based on cation-π interaction between the positive imidazole groups on PIL-MWCNTs surface and hydroquinone (HQ) or catechol (CC), excellent discrimination ability toward HQ and CC and improved simultaneous detection performance were achieved. The linear range for HQ and CC were 1.0 × 10−6 to 5.0 × 10−4 M and 1.0 × 10−6 to 4.0 × 10−4 M, respectively. The detection limit for HQ was 4.0 × 10−7 M and for CC 1.7 × 10−7 M (S/N = 3), correspondingly.  相似文献   

11.
Polyimide (PI)‐based nanocomposites containing aminophenyl functionalized multiwalled carbon nanotubes (AP‐MWCNTs) obtained through a diazonium salt reaction was successfully prepared by in situ polymerization. PI composites with different loadings of AP‐MWCNTs were fabricated by the thermal conversion of poly(amic acid) (PAA)/AP‐MWCNTs. The mechanical and electrical properties of the AP‐MWCNTs/PI composites were improved compared with those of pure PI due to the homogeneous dispersion of AP‐MWCNTs and the strong interfacial covalent bonds between AP‐MWNTs and the PI matrix. The conductivity of AP‐MWNTs/PI composites (5:95 w/w) was 9.32 × 10?1 S/cm which was about 1015 times higher than that of Pure PI. The tensile strength and tensile modules of the AP‐MWCNTs/PI composites with 0.5 wt % of AP‐MWCNTs were increased by about 77% (316.9 ± 10.5 MPa) and 25% (8.30 ± 1.10 GPa) compared to those of pure PI, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 960–966  相似文献   

12.
To improve the dispersion of multi‐walled walled carbon nanotubes (MWCNTs) and investigate the effect of dispersant for MWCNTs functionalization on the dielectric, mechanical, and thermal properties of Polyvinylidene fluoride (PVDF) composites, two different dispersants (Chitosan and TritonX‐100) with different dispersion capability and dielectric properties were used to noncovalently functionalize MWCNTs and prepare PVDF composites via solution blending. Fourier transform infrared, X‐Ray diffraction, and Raman spectroscopy indicated that TritonX‐100 and Chitosan were noncovalent functionalized successfully on the surface of MWCNTs. With the functionalization of Chitosan and TritonX‐100, the dispersion of MWCNTs changed in different extent, which was investigated by dynamic light scattering and confocal laser scan microscopy. The dielectric, mechanical, and thermal properties of PVDF composites were also improved. Meanwhile, it was also found that the dielectric properties of PVDF composites are closely related to the dielectric properties of dispersant. High dielectric constant of dispersant contributes to the grant dielectric constant of PVDF composites. The mechanical and thermal properties of MWCNTs/PVDF composites largely depend on the dispersion of MWCNTs in PVDF, interfacial interactions and the residual solvent. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A novel magnetic adsorbent, benzyl groups functionalized imidazolium-based polymeric ionic liquid (PIL)-coated magnetic multiwalled carbon nanotubes (MWCNTs) (m-MWCNTs@PIL), has been successfully synthesized and applied for the extraction of Cu, Zn-superoxide dismutase (Cu, Zn-SOD). The m-MWCNTs@PIL were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM) and zeta-potential nanoparticles. In this method, the m-MWCNTs@PIL could interact with Cu, Zn-SOD through hydrogen bonding, π-π and electrostatic interactions. The extraction performance of the m-MWCNTs@PIL in the magnetic solid-phase extraction (MSPE) procedure was investigated, coupled with the determination by UV–vis spectrophotometer. Compared with m-MWCNTs@IL and m-MWCNTs, the m-MWCNTs@PIL exhibited the highest extraction capacity of 29.1 mg/g for Cu, Zn-SOD. The adsorbed Cu, Zn-SOD remained high specific activity after being eluted from m-MWCNTs@PIL by 1 moL/L NaCl solution. Besides, the m-MWCNTs@PIL could be easily recycled and successfully employed in the extraction of Cu, Zn-SOD from real samples. Under the optimal conditions, the precision, repeatability and stability of the proposed method were investigated and the RSDs were 0.29%, 1.68% and 0.54%, respectively. Recoveries were in the range of 82.7–102.3%, with the RSD between 3.47% and 5.35%. On the basis of these results, the developed method has great potential in the extraction of Cu, Zn-SOD or other analytes from biological samples.  相似文献   

14.
A simple, sensitive, and reliable method based on a multi-walled carbon nanotubes (MWNTs) modified carbon ionic liquid electrode (CILE) has been successfully developed for determination of dopamine (DA) in the presence of ascorbic acid (AA). The acid-treated MWNTs with carboxylic acid functional groups could promote the electron-transfer reaction of DA and inhibit the voltammetric response of AA. Due to the good performance of the ionic liquid, the electrochemical response of DA on the MWNTs/CILE was better than that of other MWNTs modified electrodes. Under the optimum conditions a linear calibration plot was obtained in the range 5.0×10(-8) to 2.0×10(-4) mol L(-1) and the detection limit was 1.0×10(-8) mol L(-1).  相似文献   

15.
建立了以多壁碳纳米管为固相萃取吸附剂分离富集牛奶、鸡蛋以及蜂蜜中的甲硝唑残留,并用高效液相色谱法测定的分析方法。考察了碳纳米管对甲硝唑的吸附效果,洗脱剂的种类及其用量、碳纳米管的长度及大小和上样速率对萃取率的影响,优化了固相萃取条件。在优化实验条件下,方法的线性范围为0.01~10 mg/L,检出限为0.25μg/kg;对3种实际样品分别进行1、10、50μg/kg 3种水平下的加标回收实验,样品回收率为68%~112%,RSD为3.3%~17.1%,定量下限为0.8μg/kg。方法灵敏度高、简便快速且成本低,符合食品中低浓度兽药残留的分析方法要求。  相似文献   

16.
We report the synthesis of a composite material comprised of poly(4‐vinylpyridine) (P4VP) grafted on multiwall carbon nanotubes (MWCNTs) and the preparation of a nanohybrid via quaternization of the nitrogen atom per monomeric unit of the polymer chains. 4‐Vinylpyridine was polymerized anionically using high vacuum techniques and was reacted with MWCNTs under vacuum to be grafted on the polymer segments. The composite material was soluble in common solvents and the dispersion of the carbon nanotubes was improved after quaternization due to the formation of polymeric ionic liquid (PIL) of the MWCNTs‐g‐[P4VP‐r‐poly(4ViEtPy+Br)] type. The successful synthesis was confirmed with Fourier‐transform infrared and Raman spectroscopies, whereas differential scanning calorimetry was adopted to verify the stability of the polymer's glass transition temperature before and after grafting on the MWCNTs. Moreover, thermogravimetric analysis was used for examining the thermal stability and the PIL formation of the composite. Energy dispersive spectroscopy measurements confirm the precipitation of silver bromide when the MWCNTs‐g‐[P4VP‐r‐poly(4ViEtPy+Br)] is reacted with silver nitrite indicating the successful quaternization and formation of the appropriate PIL. High temperature size exclusion chromatography was used for the determination of the molecular characteristics (average molecular weight by number $\overline M _n$ , polydispersity I) of the homopolymer obtained from the filtration of the composite material. Finally, field‐emission scanning electron microscopy was used to verify the successful grafting of the polymer to the MWCNTs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
张亚  张宏芳  郑建斌 《化学学报》2008,66(19):2124-2130
将壳聚糖(Chi)-辣根过氧化物酶(HRP)-多壁碳纳米管(MWCNTs)的复合物修饰在玻碳电极(GCE)表面, 制备了HRP修饰电极(Chi-HRP-MWCNTs/GCE), 并将其用于在亲水性离子液体1-乙基-3-甲基咪唑四氟硼酸([EMIM]BF4)中HRP的直接电化学研究. 紫外可见光谱和红外光谱表明, HRP在复合物内保持了其原始构象. 电化学研究表明, 该修饰电极在[EMIM]BF4中的循环伏安图上出现了一对峰形良好、几乎对称的氧化还原峰, 式量电位为-0.247 V (vs. Ag/AgCl), 说明包埋在Chi-MWCNTs中的HRP与电极之间发生了直接电子传递; HRP在电极表面直接电子转移的速率常数ks为3.12 s-1; 在65 ℃的[EMIM]BF4中HRP仍然保持其活性; HRP修饰电极对过氧化氢的还原具有电催化作用, 其表观米氏常数Km为5.6×10-5 mol&#8226;L-1, 催化电流与过氧化氢浓度在5.0×10-7~5.0×10-5 mol&#8226;L-1范围内呈线性关系, 检出限为2.0×10-7 mol&#8226;L-1. 该研究为非水相生物传感器的构制提供了一种新途径.  相似文献   

18.
Multi‐walled carbon nanotube (MWCNT)/polythiophene (PTh) composites have been prepared by in situ chemical oxidative polymerization. PTh is synthesized onto the sidewalls of the MWCNTs, which play a role as hard templates for PTh to produce one‐dimensional nanostructures. The morphology and structures of the MWCNT/PTh composites are characterized by High‐resolution transmission electron microscopy, x‐ray diffraction, and Fourier transform infrared spectrometry. Their electrical property and thermal stability are determined using vector network analyzer and thermal gravimetric analyzer. Moreover, the mechanism of MWCNT/PTh nanowire formation is described. The studies show that the composites are nanowires with core‐shell structure, in which the outer shells and inner cores are formed by PTh and MWCNTs, respectively. The addition of MWCNTs does not change the backbone structure of PTh and affect the amorphous condition of PTh very slightly, however, it improves the electrical conductivity and thermal stability of PTh.  相似文献   

19.
制备了碳纳米管(MWCNTs)和疏水性离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)复合修饰电极(MWCNTs-BMIMPF6/GCE),并采用红外光谱(IR)分别对MWCNTs、BMIMPF6及MWCNTs-BMIMPF6进行了表征。运用循环伏安法研究了百草枯(PQ)在该修饰电极上的电化学行为。结果表明,在pH7.0的PBS缓冲溶液中,PQ在MWCNTs-BMIMPF6/GCE上出现2对明显的氧化还原峰,在20~200 mV/s扫描速率范围内,其氧化还原峰电流均与扫描速率平方根(v1/2)呈线性关系,表明该电极过程受扩散控制。计算了电极过程的部分动力学参数:电极有效面积A=0.156 4 cm2,百草枯在pH7.0的PBS缓冲液中的扩散系数D=7.0×10-5cm2/s。优化了方波溶出伏安法(SWSV)的实验参数,发现峰电流Ipa1与PQ浓度在7.729×10-7~9.660×10-5mol/L范围内呈线性关系,检出限为1.576×10-7mol/L。采用该方法对实际水样进行检测,增敏回收率为93%~104%。  相似文献   

20.
Room temperature ionic liquids (RTILs), 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate, [bmim]BF4, and multiwalled carbon nanotubes (MWCNTs) were used for improvement of a praseodymium carbon paste ion selective sensor response. [bmim]BF4 can be a better binder than mineral oils. MWCNTs have a good conductivity which helps the transduction of the signal in carbon paste electrode. The characteristics of these electrodes as potentiometric sensors were evaluated and compared with PVC membrane sensor. The results indicate that potentiometric sensor constructed with ionic liquid shows an increase in performance in terms of Nernstian slope, selectivity, response time, and response stability compared to Pr(III) PVC membrane sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号