首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
混合导体透氧膜反应器可以将供氧反应、氧分离和耗氧反应耦合在一个单元, 实现反应和分离一体化, 简化化工过程. 水分解反应参与的混合导体透氧膜反应器能够实现氢气的制备和分离, 近年来受到越来越多的关注. 这篇文章综述了混合导体透氧膜反应器中水分解反应领域的研究进展, 总结了包括膜材料、催化剂、操作条件等对透氧膜反应器中水分解反应的影响, 分析了目前存在的问题, 同时展望了该领域在膜材料、膜结构和催化剂开发等方面的未来发展方向, 希望有助于促进膜反应器中水分解反应的研究.  相似文献   

2.
混合导体透氧膜反应器   总被引:4,自引:0,他引:4  
综述了混合导体透氧膜反应器中的催化反应.介绍了混合导体透氧膜的氧渗透原理、膜材料的结构、组成以及无机膜反应器的种类和优势.详细讨论了混合导体透氧膜反应器中的甲烷部分氧化反应以及用于该反应的膜材料的发展历程,总结了甲烷氧化偶联和乙烷氧化脱氢等膜反应器中的催化反应,以及混合导体透氧膜用于水分解和二氧化碳分解等受热力学平衡限制的反应.  相似文献   

3.
半透膜是一种专用于渗透实验的材料,工业上也可用来分离电解质。天然的半透膜广泛地存在于动植物体内,惜其形态大多不便于应用。最初习用之天然半透膜有动物(猪、牛)膀胱,人造半透膜则有羊皮纸等。作者在研究藻酸铵的制造中,作了一些藻酸化学性质的实验;并做成一种半透膜。现将制法简单介绍于下: 1.溶液的制备 (1)藻酸盐胶液——取藻酸铵(或其他可溶性藻酸盐)5克置烧杯中,加水100毫升,溶解完圣均匀后,即可应用。此液不宜储存太久,当发现胶液中的粘滞性消失或太差时,应另行  相似文献   

4.
研制了新型的一次热解吸直接进样热解析仪.考察了新型热解吸仪热解吸定量的重复性、准确性、热解析率、线性等性能.通过实际采样分析证明,该方法提高了浓缩倍数,操作简单,易于掌握,定量重复性好、准确度高,分析结果可靠.适合大批量样品的分析测试.  相似文献   

5.
膜进样质谱(MIMS)具有简单、快速和高灵敏等优点,在现场检测中的应用日益广泛.该技术利用半透膜将目标化合物从复杂的气相、液相体系中选择性分离后进入质谱进行分析检测.由于其可在不经色谱分离和样品前处理条件下实现复杂实际样品的分析,特别适合于现场应用.该文综述了膜进样质谱的原理和主要组成,重点论述了膜进样-单光子软电离质...  相似文献   

6.
研制了一种热解析装置,并与气相色谱或气相色谱-质谱联用,定性定量分析了大气可吸入颗粒物中的半挥发性有机物。装置为直热式加热,升温速率快;直接安装在色谱进样器上方,无需冷阱聚焦。将热解析装置与气相色谱联用,优化了样品承载体材质、热解析条件和进样模式,并用于16种多环芳烃和9种正构烷烃的检测。结果表明,热解析-气相色谱方法对多环芳烃和正构烷烃的检出限分别为0.014~0.093 ng和0.016~0.026 ng,线性相关系数大于0.9975;用于3个城市PM10中的痕量多环芳烃和正构烷烃的定量测定,回收率分别在95%~135%(多环芳烃)和95%~115%(正构烷烃)之间。将热解析装置与气相色谱-质谱联用,比较了3个城市7种粒径分布的PMx(x=10,5,2,1,0.5,0.25,0.1)中的多环芳烃和正构烷烃,结果表明,不同粒径颗粒物均含有正构烷烃和PAHs,但含量相差很大。  相似文献   

7.
1.用实验证实有高分子透过半透膜时,π_(实验)=σ·π_(理论). 2.指出在透过过程中,溶质在溶液池和溶剂池内的物料平衡可能并不满足,大部分进入半透膜的高分子会停留在膜内. 3.在忽略溶质透过本身所引致的体积改变时,渗透压观察值 ?? k_s,k_p分别是半透膜对溶剂分子和高分子的透速常数. 4.高聚物试样中如无分子量极低的部分时,作者等建议可以在五至十倍于溶剂平衡所需时间的期间内观察渗透压是否随时间缓缓下降作为高分子有无透过半透膜的判据. 5.实验数据显示部分高分子透过半透膜的结果使所得??_n值偏高,A_2值偏低.  相似文献   

8.
通常所谓膜就是指薄而柔软可折叠的一切天然物和人工制造的东西。根据它们在溶液里的性质可分为不透膜和半透膜二类。不透膜对于一切离子和分子都完全不能透过,这类性质的膜是很少存在。半透膜对于某些离子和分子可以透过而对于其他离子和分子完全不能或极少能透过,绝大部分的膜都是属于这类的,例如纤维素膜、羊皮纸、玻璃膜、硝化棉膜和许多动植物体内的器官表皮和细胞膜等,由于生理现象和这些膜的半透作用有密切关系,因此很早以前就对这些膜的半透性加以研究,并且应用到工业上和实验室里,例如电解净水,隔膜电解合成无机化合物等。  相似文献   

9.
示波极谱法测定地质样品中痕量碘的样品分解方法比较   总被引:2,自引:1,他引:2  
分别用半熔法、热解法、碱熔法,酸蒸馏法分解地质样品,极谱法测定痕量碘。比较了4种分解方法的效果。指出了半熔法为最佳。  相似文献   

10.
采用膜进样-光电子磁场增强电离(MEPEI)/单光子电离(SPI)复合电离源飞行时间质谱(TOF-MS)在线分析水中醚类汽油添加剂:甲基叔丁基醚(MTBE)、乙基叔丁基醚(ETBE)、甲基叔戊基醚(TAME)和二异丙基醚(DIPE)。膜进样方式无需样品前处理,通过渗透蒸发实现液体样品在线富集;SPI电离碎片离子少,谱图简单,可利用分子离子进行快速的半定性分析;MEPEI产生样品分子碎片可精确定性同分异构体,从而克服直接进样时复杂基质中重叠峰解析的难题。在最优实验条件下:膜温度为60℃,膜厚度为50μm,膜面积为160 mm2,单个样品分析时间小于100 s。MTBE,ETBE,TAME和DIPE的检出限分别达到5.5,4.8,3.3和4.3μg/L。本方法成功应用于模拟地下水中MTBE类汽油添加剂的快速检测。  相似文献   

11.
In this work we evaluate the influence of thermal desorber temperature on the analytical response of a swipe-based thermal desorption ion mobility spectrometer (IMS) for detection of trace explosives. IMS response for several common high explosives ranging from 0.1 ng to 100 ng was measured over a thermal desorber temperature range from 60 °C to 280 °C. Most of the explosives examined demonstrated a well-defined maximum IMS signal response at a temperature slightly below the melting point. Optimal temperatures, giving the highest IMS peak intensity, were 80 °C for trinitrotoluene (TNT), 100 °C for pentaerythritol tetranitrate (PETN), 160 °C for cyclotrimethylenetrinitramine (RDX) and 200 °C for cyclotetramethylenetetranitramine (HMX). By modifying the desorber temperature, we were able to increase cumulative IMS signal by a factor of 5 for TNT and HMX, and by a factor of 10 for RDX and PETN. Similar signal enhancements were observed for the same compounds formulated as plastic-bonded explosives (Composition 4 (C-4), Detasheet, and Semtex). In addition, mixtures of the explosives exhibited similar enhancements in analyte peak intensities. The increases in sensitivity were obtained at the expense of increased analysis times of up to 20 seconds. A slow sample heating rate as well as slower vapor-phase analyte introduction rate caused by low-temperature desorption enhanced the analytical sensitivity of individual explosives, plastic-bonded explosives, and explosives mixtures by IMS. Several possible mechanisms that can affect IMS signal response were investigated such as thermal degradation of the analytes, ionization efficiency, competitive ionization from background, and aerosol emission.  相似文献   

12.
A new sample introduction system based on spray nebulization has been successfully developed to perform direct analysis of liquid samples by IMS. The system comprises a concentric nebulizer that generates a spray plume which is introduced in the ionization region of the IMS instrument through a temperature controlled transfer line. This system avoids previous problems of direct injection of liquid samples and maintains the countercurrent flow of inert gas necessary for the operation of the IMS instrument. Evaluation of the qualitative and quantitative capabilities of the methodology has been performed after a carefully study of the main variables affecting the spray nebulization and the transport of the analyte molecules through the transfer line. To demonstrate the usefulness of the new sample introduction system, direct analysis of drugs and drug metabolites in saliva or urine samples have been performed, obtaining accurate, reliable and sensitive results. Moreover, analytes with physico-chemical properties that limited the capability of thermal desorption as sample introduction method such as amino acids can be analyzed by using the spray nebulization methodology.  相似文献   

13.
Methyl tert-butyl ether (MTBE) is commonly used as chemical additive to increase oxygen content and octane rating of reformulated gasoline. Despite its impact on enhancing cleaner combustion of gasoline, MTBE poses a threat to surface and ground water when gasoline is released into the environment. Methods for onsite analysis of MTBE in water samples are also needed. A less common technique for MTBE detection from water is ion mobility spectrometry (IMS). We describe a method for fast sampling and screening of MTBE from water by solid phase microextraction (SPME) and IMS. MTBE is adsorbed from the head space of a sample to the coating of SPME fiber. The interface containing a heated sample chamber, which couples SPME and IMS, was constructed and the SPME fiber was introduced into the sample chamber for thermal desorption and IMS detection of MTBE vapors. The demonstrated SPME-IMS method proved to be a straightforward method for the detection of trace quantities of MTBE from waters including surface and ground water. We determined the relative standard deviation of 8.3% and detection limit of 5 mg L−1 for MTBE. Because of short sampling, desorption, and detection times, the described configuration of combined SPME and IMS is a feasible method for the detection of hazardous substances from environmental matrices.  相似文献   

14.
建立了检测水中有机磷农药的离子迁移率谱仪预富集进样方法。预富集器由表面覆盖有吸附薄膜的微热板、聚四氟乙烯电路板和管座组成,具有操作简单,无需有机溶剂,自加热,热容小,功耗低等优点。以马拉硫磷检测为例,分析了富集器解吸升温速率和离子迁移率谱仪半透膜温度对检测结果的影响。采用高温短时脉冲加热和低温维持加热相结合的解吸方式,既可形成较高的进样浓度脉冲,又可减少进入漂移管的杂质,有利于提高离子迁移率谱仪检测灵敏度。实验表明:采用所述预富集及两阶段加热解吸进样方法,对水中马拉硫磷的检出限为3.9μg/L,达到了国家标准对水中有机磷检测的要求。  相似文献   

15.
H Wang  Y Wu  B Guo  W Sun  L Ding  B Chen 《The Analyst》2012,137(17):3982-3988
A room temperature ionic liquids (RTILs) matrix-assisted desorption corona beam ionization (DCBI) technique was proposed. The quantification of the DCBI method for low-polar small molecules was improved greatly in terms of accuracy and precision. The thermal desorption processes of analytes in different liquid matrices under DCBI interrogation was investigated with thermal imaging and mass spectrometry simultaneously. When in a volatile liquid matrix, the analyte was not only desorbed thermally from the solid residue phase, but also desorbed along with evaporation of the matrix. The varying matrix evaporation speed and unstable sample introduction path clearly influence the quantitative result. With non-volatile RTILs utilized as the matrix in the sample introduction, a micro slow release system (MSRS) is formed to relieve the fluctuation of analyte evaporation. With the RTILs matrix-assisted DCBI-MS technique, dramatic improvement of the quantification precision (RSD from about 20% to less than 3%) for model analytes was achieved. Seventeen small pharmaceutical and four pesticide molecules were detected successfully. With a shared mechanism, other thermal desorption and/or APCI-related ambient ionization techniques may also benefit from the RTILs matrix.  相似文献   

16.
Matrix‐assisted laser desorption/ionisation (MALDI) imaging mass spectrometry (IMS) allows for the simultaneous detection and imaging of several molecules in brain tissue. However, the detection of glycerolipids such as diacylglycerol (DAG) and triacylglycerol (TAG) in brain tissues is hindered in MALDI‐IMS because of the ion suppression effect from excessive ion yields of phosphatidylcholine (PC). In this study, we describe an approach that employs a homogeneously deposited metal nanoparticle layer (or film) for the detection of glycerolipids in rat brain tissue sections using IMS. Surface‐assisted laser desorption/ionisation IMS with sputter‐deposited Pt film (Pt‐SALDI‐IMS) for lipid analysis was performed as a solvent‐free and organic matrix‐free method. Pt‐SALDI produced a homogenous layer of nanoparticles over the surface of the rat brain tissue section. Highly selective detection of lipids was possible by MALDI‐IMS and Pt‐SALDI‐IMS; MALDI‐IMS detected the dominant ion peak of PC in the tissue section, and there were no ion peaks representing glycerolipids such as DAG and TAG. In contrast, Pt‐SALDI‐IMS allowed the detection of these glycerolipids, but not PC. Therefore, using a hybrid method combining MALDI and Pt‐SALDI (i.e., matrix‐enhanced [ME]‐Pt‐SALDI‐IMS), we achieved the simultaneous detection of PC, PE and DAG in rat brain tissue sections, and the sensitivity for the detection of these molecules was better than that of MALDI‐IMS or Pt‐SALDI alone. The present simple ME‐Pt‐SALDI approach for the simultaneous detection of PC and DAG using two matrices (sputter‐deposited Pt film and DHB matrix) would be useful in imaging analyses of biological tissue sections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A simple and rapid method using a microhotplate-based preconcentrator and an ion mobility spectrometer (IMS) is proposed for the detection of malathion in water. The preconcentrator is prepared by micro-electro-mechanical system (MEMS) process. Coated with Polydimethylsiloxane (PDMS), it has the advantages of solvent-less, low energy cost, self-heating and ease to combine with IMS. The operating conditions of the preconcentrator-IMS system, such as extraction time, extraction temperature, agitation speed and desorption temperature, were optimised. Using the preconcentrator, the sampling procedure can be simplified and the detection limit of the system can be decreased. A linear relationship between the IMS response and the concentration of the analyte solution was verified. The malathion detection limit based on 3 times the baseline noise is 0.43?µg?L?1 and the total analysis time is less than 30?minutes.  相似文献   

18.
The construction of a new solid-phase microextraction/surfaced enhanced laser desorption/ionization-ion mobility spectrometry (SPME/SELDI-IMS) device is reported here. A polypyrrole (PPY) coated SPME/SELDI fiber was employed as the extraction phase and SELDI surface to introduce analytes into the IMS. Analytes were directly ionized from the PPY coated fiber tip by a Nd:YAG laser without the addition of a matrix. Optimal experimental parameters, such as extraction conditions and laser parameters, were investigated. The use of a SPME/SELDI fiber simplified the sampling and sample preparation for IMS. Verapamil could be directly extracted from urine sample and analyzed by IMS without any further sample cleanup. This technique could be used for the analysis of drugs and other non-volatile compounds.  相似文献   

19.
In Ion Mobility Spectrometry (IMS), the analysis of aqueous samples is impaired by the mandatory removal of water. Before the sample enters the IMS system, the analyte must be extracted from water. For this purpose, the stir bar sorptive extraction (SBSE) method with polydimethylsiloxane (PDMS) as sorbent was chosen for the enrichment of alachlor, lindane and diuron from aqueous samples. Thermal desorption and detection of the analytes were carried out by conventional IMS coupled with an upstream thermal desorption system (TDS). K0-values were determined using optimized instrumental parameters e.g. gas flows, temperatures and shutter grid width. Furthermore, influence of the experimental parameters (e.g. pH, stirring time, sodium chloride) on enrichment degree of the analytes at the PDMS sorbent has been investigated. For calibration, non-linear second-order calibration functions were applied and the formulas for the Limit of Detection and Limit of Quantification were derived. For example, a Limit of Detection of 5 μg kg?1 and Limit of Quantification of 16 μg kg?1 were obtained for lindane.  相似文献   

20.
Sample collection for Ion Mobility Spectrometry (IMS) analysis is typically completed by swiping a collection wipe over a suspect surface to collect trace residues. The work presented here addresses the need for a method to measure the collection efficiency performance of surface wipe materials as a function of the number of times a wipe is used to interrogate a surface. The primary purpose of this study is to investigate the effect of wipe reuse, i.e., the number of times a wipe is swiped across a surface, on the overall particle collection and IMS response. Two types of collection wipes (Teflon coated fiberglass and Nomex) were examined by swiping multiple times, ranging from 0 to 1000, over representative surfaces that are common to security screening environments. Particle collection efficiencies were determined by fluorescence microscopy and particle counting techniques, and were shown to improve dramatically with increased number of swiping cycles. Ion mobility spectrometry was used to evaluate the chemical response of known masses of explosives (deposited after reusing wipes) as a function of the wipe reuse number. Results show that chemical response can be negatively affected, and greatly depends upon the conditions of the surface in which the wipe is interrogating. For most parameters tested, the PCE increased after the wipe was reused several times. Swiping a dusty cardboard surface multiple times also caused an increase in particle collection efficiency but a decrease in IMS response. Scanning electron microscopy images revealed significant surface degradation of the wipes on dusty cardboard at the micrometer spatial scale level for Teflon coated wipes. Additionally, several samples were evaluated by including a seven second thermal desorption cycle at 235°C into each swipe sampling interval in order to represent the IMS heating cycle. Results were similar to studies conducted without this heating cycle, suggesting that the primary mechanism for wipe deterioration is mechanical rather than thermal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号