首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Time-dependent, quantum reaction dynamics wavepacket approach is employed to investigate the impacts of the translational, vibrational, and rotational motion on the HD+H(3)(+) → H(2)D(+) + H(2) reaction using the Xie-Braams-Bowman potential energy surface [Z. Xie, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 122, 224307 (2005)]. We treat this five atom reaction with a seven-degree-of-freedom model by fixing one Jacobi and one torsion angle related to H(3) (+) at the lowest saddle point geometry of the potential energy surface. The initial state selected reaction probabilities show that the rotational excitations of H(+)-H(2) greatly enhance the reactivity with the reaction probabilities increased double at high rotational states compared to the ground state. However, the vibrational excitations of H(3) (+) hinder the reactivity. The ground state reaction probability shows no reaction threshold for this exoergic reaction, and as the translational energy increases, the reaction probability decreases. Furthermore, reactive resonances and zero point energy play very important roles on the reaction dynamics. The obtained integral cross section has the character of an exoergic reaction without a threshold: it decreases with the translational energy increasing. The calculated thermal rate constants using this seven-degree-of-freedom model are in agreement with a later experiment measurement.  相似文献   

2.
利用准经典轨线理论,在BW2和G3两个势能面上,研究了Cl+HD反应的动力学.计算结果表明,产物的转动取向对势能面及反应体系的质量因子非常敏感.在BW2势能面上,计算的两个产物的转动取向强于在G3势能面上计算的结果,而无论是在BW2势能面上还是在G3势能面上,DCl产物的取向都强于HCl产物的取向.计算结果还表明,在不同的势能面上反应物的转动激发对反应的影响有着显著的不同.在BW2势能面上,反应物的初始转动激发有利于Cl+HD反应的进行;而在G3势能面上,反应物的初始转动激发消弱了反应的反应性.  相似文献   

3.
4.
The dynamics of the NH + H→N+H2 reaction has been investigated by means of the 3D quasiclassical trajectory approach by using the LEPS potential energy surface.The calculated rate coefficient is in good agreement with the experimental value.The reaction was found to occur via a direct channel.The product H2 has a cold excitation of rotational state,but has a reverse distribution of the vibrational state with a peak at v=1.Based on the potential energy surface and the trajectory analysis,the reaction mechanism has been explained successfully.  相似文献   

5.
Quantum-state-resolved reactive-scattering dynamics of F+D(2)O-->DF+OD have been studied at E(c.m.)=5(1) kcal/mol in low-density crossed supersonic jets, exploiting pulsed discharge sources of F atom and laser-induced fluorescence to detect the nascent OD product under single-collision conditions. The product OD is formed exclusively in the v(OD)=0 state with only modest rotational excitation ( =0.50(1) kcal/mol), consistent with the relatively weak coupling of the 18.1(1) kcal/mol reaction exothermicity into "spectator" bond degrees of freedom. The majority of OD products [68(1)%] are found in the ground ((2)Pi(32) (+/-)) spin-orbit state, which adiabatically correlates with reaction over the lowest and only energetically accessible barrier (DeltaE( not equal) approximately 4 kcal/mol). However, 32(1)% of molecules are produced in the excited spin-orbit state ((2)Pi(12) (+/-)), although from a purely adiabatic perspective, this requires passage over a DeltaE( not equal) approximately 25 kcal/mol barrier energetically inaccessible at these collision energies. This provides unambiguous evidence for nonadiabatic surface hopping in F+D(2)O atom abstraction reactions, indicating that reactive-scattering dynamics even in simple atom+polyatom systems is not always isolated on the ground electronic surface. Additionally, the nascent OD rotational states are well fitted by a two-temperature Boltzmann distribution, suggesting correlated branching of the reaction products into the DF(v=2,3) vibrational manifold.  相似文献   

6.
We report in this paper a quantum dynamics study for the reaction H+NH3-->NH2+H2 on the potential energy surface of Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The quantum dynamics calculation employs the semirigid vibrating rotor target model [J. Z. H. Zhang, J. Chem. Phys. 111, 3929 (1999)] and time-dependent wave packet method to propagate the wave function. Initial state-specific reaction probabilities are obtained, and an energy correction scheme is employed to account for zero point energy changes for the neglected degrees of freedom in the dynamics treatment. Tunneling effect is observed in the energy dependency of reaction probability, similar to those found in H+CH4 reaction. The influence of rovibrational excitation on reaction probability and stereodynamical effect are investigated. Reaction rate constants from the initial ground state are calculated and are compared to those from the transition state theory and experimental measurement.  相似文献   

7.
A state-to-state dynamics study was performed at a collision energy of 1.53 eV to analyze the effect of the C-H stretch mode excitation on the dynamics of the gas-phase H+CHD3 reaction, which can evolve along two channels, H-abstraction, CD3+H2, and D-abstraction, CHD2+HD. Quasi-classical trajectory calculations were performed on an analytical potential energy surface constructed previously by our group. First, strong coupling between different vibrational modes in the entry channel was observed; i.e., the reaction is non-adiabatic. Second, we found that the C-H stretch mode excitation has little influence on the product rotational distributions for both channels, and on the vibrational distribution for the CD3+H2 channel. However, it has significant influence on the product vibrational distribution for the CHD2+HD channel, where the C-H stretch excitation is maintained in the products, i.e., the reaction shows mode selectivity, reproducing the experimental evidence. Third, the C-H stretch excitation by one quantum increases the reactivity of the vibrational ground-state, in agreement with experiment. Fourth, the state-to-state angular distributions of the CD3 and CHD2 products are reported, finding that for the reactant ground-state the products are practically sideways, whereas the C-H excitation yields a more forward scattering.  相似文献   

8.
9.
In this article we report the results of three-dimensional time-dependent quantum wavepacket calculations carried out for the Br + HD( v = 0, j = 0) reaction in the collision energy range 0.0-1.2 eV. An accurate potential energy surface computed by Kurosaki was used for the dynamical calculations. Both reactive channels, BrH + D and BrD + H, show vibrational enhancement of the reaction cross sections. For the three initial vibrational states considered, the production of BrD channel dominates over that of BrH for the considered collision energy range. The two arrangement channels exhibit different initial rotational state dependence. The cross section for the formation of BrD is almost independent of j whereas the same for the formation of BrH increases with increase in j. A comparison with the results on an e-LEPS surface shows that the two surfaces behave very differently with respect to the cross section for the initial rotational states.  相似文献   

10.
The adiabatic capture centrifugal sudden approximation (ACCSA) has been applied to the ground state reaction N+NH-->N2+H over the temperature range 2-300 K using an existent potential energy surface. The resultant thermal rate constants are in agreement with available rate constants from quasi-classical trajectory calculations but are significantly larger than the available experimentally derived rate. The calculated rate constants monotonically increase with increasing temperature but could only be approximately described with a simple Arrhenius-like form. Subtle quantum effects are evident in the initial rotational state resolved cross sections and rate constants.  相似文献   

11.
In this paper, we present the results of a theoretical investigation on the dynamics of the title reaction at collision energies below 1.2 kcal/mol using rigorous quantum reactive scattering calculations. Vibrationally resolved integral and differential cross sections, as well as product rotational distributions, have been calculated using two electronically adiabatic potential energy surfaces, developed by us on the basis of semiempirical modifications of the entrance channel. In particular, we focus our attention on the role of the exothermicity and of the exit channel region of the interaction on the experimental observables. From the comparison between the theoretical results, insight about the main mechanisms governing the reaction is extracted, especially regarding the bimodal structure of the HF(v = 2) nascent rotational state distributions. A good overall agreement with molecular beam scattering experiments has been obtained.  相似文献   

12.
Exact quantum mechanical calculation of the reaction probability for the collinear H + H2 reaction on a Porter-Karplus potential energy surface are carried out by the finite-difference boundary value method at 6 energes in the threshold region and compared to close coupling, distorted wave, classical S matrix, transition state theory, and vibrational adiabatic calculations.  相似文献   

13.
A full dimensional, nine-degree-of-freedom (9DOF), time-dependent quantum dynamics wave packet approach is presented for the study of the H2+C2H-->H+C2H2 reaction system. This is the first full dimensional quantum dynamics study for a diatom-triatom reaction system. The effects of the initial vibrational and rotational excitations of the reactants on the reactivity of this reaction are investigated. This study shows that vibrational excitations of H2 enhance the reactivity; whereas, the vibrational excitations of C2H only have a small effect on the reaction probability. In addition, the bending excitations of C2H, compared to the ground state reaction probability, hinder the reactivity. Comparison of the ground state reaction probabilities of the 9DOF and 8DOF shows the reaction probability from the full dimensional calculation is larger, with more prominent resonance features.  相似文献   

14.
《Chemical physics》2005,308(3):259-266
A new ground state potential energy surface has been developed for the F+H2 reaction. Using the UCCSD(T) method, ab initio calculations were performed for 786 geometries located mainly in the exit channel of the reaction. The new data was used to correct exit channel errors that have become apparent in the potential energy surface of Stark and Werner [J. Chem. Phys. 104 (1996) 6515]. While the entrance channel and saddlepoint properties of the Stark–Werner surface are unchanged on the new potential, the exit channel behavior is more satisfactory. The exothermicity on the new surface is much closer to the experimental value. The new surface also greatly diminishes the exit channel van der Waals well that was too pronounced on the Stark–Werner surface. Several preliminary dynamical scattering calculations were carried out using the new surface for total angular momentum equal to zero for F+H2 and F+HD. It is found that gross features of the reaction dynamics are quite similar to those predicted by the Stark–Werner surface, in particular the reactive resonance for F+HD and F+H2 survive. However, the most of the exit channel van der Waals resonances disappear on the new surface. It is predicted that the differential cross-sections at low collision energy for the F+H2 reaction may be drastically modified from the predictions based on the Stark–Werner surface.  相似文献   

15.
An exhaustive dynamics study was performed at two collision energies, 1.52 and 2.20 eV, analyzing the effects of the asymmetric (nu3) stretch mode excitation in the reactivity and dynamics of the gas-phase H + CH4 reaction. Quasi-classical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories, were performed on an analytical potential energy surface previously developed by our group. First, strong coupling between different vibrational modes in the entry channel was observed, indicating that energy can flow between these modes, and therefore that they do not preserve their adiabatic character along the reaction path; i.e., the reaction is nonadiabatic. Second, we found that the reactant vibrational excitation has a significant influence on the vibrational and rotational product distributions. With respect to the vibrational distribution, our results confirm the purely qualitative experimental evidence, although the theoretical results presented here are also quantitative. The rotational distributions are predictive, because no experimental data have been reported. Third, with respect to the reactivity, we found that the nu3 mode excitation by one quantum is more reactive than the ground state by a factor of about 2, independently of the collision energy, and in agreement with the experimental measurement of 3.0 +/- 1.5. Fourth, the state-to-state angular distributions of the products reproduce the experimental behavior at 1.52 eV, where the CH3 products scatter sideways and backward. At 2.20 eV this experimental information is not available, and therefore the results reported here are again predictive. The satisfactory reproduction of a great variety of experimental data by the present QCT study lends confidence to the potential energy surface constructed by our group and to those results whose accuracy cannot be checked by comparison with experiment.  相似文献   

16.
We follow a suggestion by Lipoff and Herschbach [Mol. Phys. 108, 1133 (2010)] and compare dressed and bare adiabatic potentials to get insight regarding the low-energy dynamics (e.g., cold reaction) taking place in molecular systems. In this particular case, we are interested to study the effect of conical intersections (ci) on the interacting atoms. For this purpose, we consider vibrational dressed adiabatic and vibrational dressed diabatic potentials in the entrance channel of reactive systems. According to our study, the most one should expect, in case of F + H(2), is a mild effect of the (1, 2) ci on its reactive/exchange process--an outcome also supported by experiment. This happens although the corresponding dressed and bare potential barriers (and the corresponding van der Waals potential wells) differ significantly from each other.  相似文献   

17.
Time-dependent wave packet quantum scattering (TWQS) calculations are presented for HD(+) (v = 0 - 3;j(0)=1) + He collisions in the center-of-mass collision energy (E(T)) range of 0.0-2.0 eV. The present TWQS approach accounts for Coriolis coupling and uses the ab initio potential energy surface of Palmieri et al. [Mol. Phys. 98, 1839 (2000)]. For a fixed total angular momentum J, the energy dependence of reaction probabilities exhibits quantum resonance structure. The resonances are more pronounced for low J values and for the HeH(+) + D channel than for the HeD(+) + H channel and are particularly prominent near threshold. The quantum effects are no longer discernable in the integral cross sections, which compare closely to quasiclassical trajectory calculations conducted on the same potential energy surface. The integral cross sections also compare well to recent state-selected experimental values over the same reactant and translational energy range. Classical impulsive dynamics and steric arguments can account for the significant isotope effect in favor of the deuteron transfer channel observed for HD(+)(v<3) and low translational energies. At higher reactant energies, angular momentum constraints favor the proton-transfer channel, and isotopic differences in the integral cross sections are no longer significant. The integral cross sections as well as the J dependence of partial cross sections exhibit a significant alignment effect in favor of collisions with the HD(+) rotational angular momentum vector perpendicular to the Jacobi R coordinate. This effect is most pronounced for the proton-transfer channel at low vibrational and translational energies.  相似文献   

18.
The H(+)+D(2) and D(+)+H(2) reactive collisions are studied using a recently proposed adiabatic potential energy surface of spectroscopic accuracy. The dynamics is studied using an exact wave packet method on the adiabatic surface at energies below the curve crossing occurring at approximately 1.5 eV above the threshold. It is found that the reaction is very well described by a statistical quantum method for a zero total angular momentum (J) as compared with the exact ones, while for higher J some discrepancies are found. For J >0 different centrifugal sudden approximations are proposed and compared with the exact and statistical quantum treatments. The usual centrifugal sudden approach fails by considering too high reaction barriers and too low reaction probabilities. A new statistically modified centrifugal sudden approach is considered which corrects these two failures to a rather good extent. It is also found that an adiabatic approximation for the helicities provides results in very good agreement with the statistical method, placing the reaction barrier properly. However, both statistical and adiabatic centrifugal treatments overestimate the reaction probabilities. The reaction cross sections thus obtained with the new approaches are in rather good agreement with the exact results. In spite of these deficiencies, the quantum statistical method is well adapted for describing the insertion dynamics, and it is then used to evaluate the differential cross sections.  相似文献   

19.
The H + F2 → HF + F reaction on ground state potential energy surface is investigated using the quantum mechanical real wave packet and Flux analysis method based on centrifugal sudden approximation. The initial state selected reaction probabilities for total angular momentum J = 0 have been calculated by both methods while the probabilities for J > 0 have been calculated by Flux analysis method. The initial state selected reaction probabilities, integral cross sections and rate coefficients have been calculated for a broad range of collision energy. The results show a large rotational enhancement of the reaction probability. Some resonances were seen in the state‐to‐state reaction probabilities while state‐to‐all reaction probabilities and the reaction cross section do not manifest any oscillations and the initial state selected reaction rate constants are sensitive to the temperature. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

20.
Classical and quantal total reaction probabilities are compared with adiabatic and sudden predictions for a model of the H + H2 (ν = 1) reaction. Near the adiabatic threshold, a distinct transition is found from dominately adiabatic dynamics to dominately sudden dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号