首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 879 毫秒
1.
Quasi-classical trajectory calculations for the Si(3P)+O2(X 3Sigmag-)-->SiO(X 1Sigma+)+O(1D) reaction have been carried out using the analytical ground 1A' potential energy surface (PES) recently reported by Dayou and Spielfiedel [J. Chem. Phys. 119, 4237 (2003)]. The reaction has been studied for a wide range of collision energies (0.005-0.6 eV) with O2 in its ground rovibrational state. The barrierless PES leads to a decrease of the total reaction cross section with increasing collision energy. It has been brought to evidence that the reaction proceeds through different reaction mechanisms whose contributions to reactivity are highly dependent on the collision energy range. At low collision energy an abstraction mechanism occurs involving the collinear SiOO potential well. The associated short-lived intermediate complex leads to an inverted vibrational distribution peaked at v'=3 and low rotational excitation of SiO(v',j') with a preferentially backward scattering. At higher energies the reaction proceeds mainly through an insertion mechanism involving the bent and linear OSiO deep potential wells and associated long-lived intermediate complexes, giving rise to nearly statistical energy disposals into the product modes and a forward-backward symmetry of the differential cross section.  相似文献   

2.
李亚民  孙萍 《物理化学学报》2011,27(6):1357-1360
基于Aguado等人拟合的APW势能面(PES), 运用准经典轨线(QCT)方法, 对反应Li+HF(ν=0, j=0)→LiF+H的动力学性质进行了计算. 主要研究了不同碰撞能条件下的反应截面、转动取向、产物散射角分布和竞争反应模式等. 结果表明, 该反应存在直接提取型和间接插入型两种反应模式, 在低能量下反应以间接插入反应模式为主, 能量大于200 meV时则以直接提取反应为主.  相似文献   

3.
We have determined the rotational state distributions of NO(v'=0,1,2) products produced from the reaction O(1D)+N2O. This is the first full characterization of the product rotational distribution of this reaction. The main part of each rotational distribution (up to j' approximately 80) has rotational temperature approximately 20,000 K and all these distributions are quite near to those predicted by the phase space theory (PST). This observation and previously reported vibrational distribution indicate that the most part of the energy partitioning of the reaction products is at least apparently statistical although the intermediate of this reaction is not so stable as to ensure the long lifetime. On the other hand, the distributions in the high rotational levels (j'=80-100) are found to decrease more sharply as j' increases than the PST predictions. The origin of the observed decrease of the distribution is discussed with quasiclassical trajectory (QCT) calculations on a five-dimensional ab initio potential energy surface (PES). The observed near-statistical distribution and the sharp decrease in the high-j' levels are well reproduced by a "half-collision" QCT calculation, where statistical distribution at the reaction intermediate is assumed. This agreement shows the rotation-translation interaction in the exit region has an effect of yielding small high-j' populations. However, a little bias of the calculated distribution toward lower rotational excitation than the observed one indicates that the combination of the statistical intermediate and the exit interaction on the current PES does not completely describe the real system. It is suggested that the reaction intermediate is generated with the distribution which is close to statistical but a little biased toward yielding high-j' products, and that the interaction in the exit region of the PES results in the sharp decrease in the high-j' levels.  相似文献   

4.
The H + CH(+) reaction is studied by quasiclassical trajectory (QCT) calculations, along with phase space theory (PST) and quantum rigid rotor calculations, employing a global single-valued potential energy surface recently derived by our group. We report QCT total cross sections for each of the three channels, for low collision energies and different reactant rotational quantum numbers. At the lowest collision energies, all cross sections exhibit a capture-like behaviour, as expected from a barrierless reaction. At higher energies, there are important dynamical effects coming from the opening of new channels in the inelastic and reactive exchange collisions. The inelastic cross sections turn out to largely increase, while the reactive abstraction cross sections are declining faster than predicted by the capture theory. A large value of the reactant rotational quantum number tends to suppress these dynamical effects. The QCT rate coefficients are reported for a temperature range from 1-700 K. Below 20 K, the abstraction and exchange QCT rate coefficients are almost constant, as predicted by the capture theory. Above this temperature, the abstraction rate coefficient declines, while the exchange and inelastic rate coefficients are increasing, due to the opening of new channels. A good agreement is observed between the experimental abstraction rate coefficient and the QCT and PST ones. The QCT inelastic results are also compared with those obtained from rigid rotor close coupling (CCRR) calculations in order to check the ability of this approach to provide a reliable estimate of the inelastic rate coefficients for a reactive system without a barrier. The laws of variation as a function of temperature are found to be very similar and the curves are parallel above 20 K. However, reaction is not allowed in the rigid rotor approximation, therefore the CCRR results are about twice as large as their QCT counterparts.  相似文献   

5.
6.
To understand the effect of different vibrational and rotational modes of reactant to enhance the reactivity of the O + HO2 → OH + O2 reaction, we revisited this important atmospheric reaction. We report here a quasi-classical trajectory (QCT) study of the reaction dynamics on a recently developed full-dimensional potential energy surface (PES). Our previous work has indicated that this reaction has two pathways, the H abstraction (HA) channel and the O abstraction (OA) channel, which lead to totally different product energy distribution. In this work, we identified that the vibrational excitation of the OH stretching (v1) mode of HO2 is the switch of the HA channel at low collision energy; meanwhile, the rotational excitation can also greatly change the branching ratio of the two pathways. With the excitation of v1 mode, the original negligible HA channel controlled by the tight transition state becomes quite important. This work presents an approach to control the branching ratio via collaboration between vibrational and rotational excitation and will enrich the knowledge of the O + HO2 reaction in atmospheric chemistry and physics.  相似文献   

7.
We present an exact quantum dynamical study and quasi-classical trajectory (QCT) calculations for the exchange and abstraction processes for the H + HS reaction. These calculations were based on a newly constructed high-quality potential energy surface for the lowest triplet state of H(2)S ((3)A"). The ab initio single-point energies were computed using complete active space self-consistent field and multi-reference configuration interaction method with a basis set of aug-cc-pV5Z. The time-dependent wave packet (TDWP) method was used to calculate the total reaction probabilities and integral cross sections over the collision energy (E(col)) range of 0.0-2.0 eV for the reactant HS initially at the ground state and the first vibrationally excited state. It was found that the initial vibrational excitation of HS enhances both abstraction and exchange processes. In addition, a good agreement is found between QCT and TDWP reaction probabilities at the total momentum J = 0 as a function of collision energy for the H + HS (v = 0, j = 0) reaction.  相似文献   

8.
9.
The first four dimensional (4D) quantum scattering calculations on the tetra-atomic H2O+Cl<-->HO+HCl reactions are reported. With respect to a full (6D) treatment, only the planar constraint and a fixed length for the HO spectator bond are imposed. This work explicitly accounts for the bending and local HO stretching vibrations in H2O, for the vibration of HCl and for the in-plane rotation of the H2O, HO and HCl molecules. The calculations are performed with the potential energy surface of Clary et al. and use a Born-Oppenheimer type separation between the motions of the light and the heavy nuclei. State-to-state cross sections are reported for a collision energy range 0-1.8 eV measured with respect to H2O+Cl. For the H2O+Cl reaction, present results agree with previous (3D) non planar calculations and confirm that excitation of the H2O stretching promotes more reactivity than excitation of the bending. New results are related to the rotation of the H2O molecule: the cross sections are maximal for planar rotational states corresponding to 10相似文献   

10.
We have performed quantum mechanical (QM) dynamics calculations within the independent-state approximation with new benchmark triplet A" and A' surfaces [B. Ramachandran et al., J. Chem. Phys. 119, 9590 (2003)] for the rovibronic state-to-state measurements of the reaction O(3P)+HCl(v=2,j=1,6,9)-->OH(v'j')+Cl(2P) [Zhang et al., J. Chem. Phys. 94, 2704 (1991)]. The QM and experimental rotational distributions peak at similar OH(j') levels, but the QM distributions are significantly narrower than the measurements and previous quasiclassical dynamics studies. The OH(low j) populations observed in the measurements are nearly absent in the QM results. We have also performed quasiclassical trajectory with histogram binning (QCT-HB) calculations on these same benchmark surfaces. The QCT-HB rotational distributions, which are qualitatively consistent with measurements and classical dynamics studies using other surfaces, are much broader than the QM results. Application of a Gaussian binning correction (QCT-GB) dramatically narrows and shifts the QCT-HB rotational distributions to be in very good agreement with the QM results. The large QCT-GB correction stems from the special shape of the joint distribution of the classical rotational/vibrational action of OH products. We have also performed QM and QCT calculations for the transition, O+HCl(v=0,T=300 K)-->OH(v'j')+Cl from threshold to approximately 130 kcal mol(-1) collision energy as a guide for possible future hyperthermal O-atom measurements. We find in general a mixed energy release into translation and rotation consistent with a late barrier to reaction. Angular distributions at high collision energy are forward peaked, consistent with a stripping mechanism. Direct collisional excitation channel cross sections, O+HCl(v=0,T=300 K)-->O+HCl(v'=1), in the same energy range are large, comparable in magnitude to the reactive channel cross sections. Although the (3)A" state dominates most collision processes, above approximately 48 kcal mol(-1), the (3)A' state plays the major role in collisional excitation.  相似文献   

11.
The reactive collision between 36Ar and the 36ArH+ species has been investigated by means of quantum mechanical (QM), quasiclassical trajectories (QCT) and statistical quantum mechanical (SQM) approaches. Reaction probabilities, cross sections as a function of the energy and rate constants in terms of the temperature have been obtained. Cumulative distributions as a function of the collision time and the inspection of selected QCT corresponding to specific dynamical mechanisms have been analysed. Predictions by means of the SQM method are in good agreement with the QM results, thus supporting the complex-forming nature of the process.  相似文献   

12.
The dynamics of O((3)P) + CO(2) collisions at hyperthermal energies were investigated experimentally and theoretically. Crossed-molecular-beams experiments at = 98.8 kcal mol(-1) were performed with isotopically labeled (12)C(18)O(2) to distinguish products of nonreactive scattering from those of reactive scattering. The following product channels were observed: elastic and inelastic scattering ((16)O((3)P) + (12)C(18)O(2)), isotope exchange ((18)O + (16)O(12)C(18)O), and oxygen-atom abstraction ((18)O(16)O + (12)C(18)O). Stationary points on the two lowest triplet potential energy surfaces of the O((3)P) + CO(2) system were characterized at the CCSD(T)/aug-cc-pVTZ level of theory and by means of W4 theory, which represents an approximation to the relativistic basis set limit, full-configuration-interaction (FCI) energy. The calculations predict a planar CO(3)(C(2v), (3)A') intermediate that lies 16.3 kcal mol(-1) (W4 FCI excluding zero point energy) above reactants and is approached by a C(2v) transition state with energy 24.08 kcal mol(-1). Quasi-classical trajectory (QCT) calculations with collision energies in the range 23-150 kcal mol(-1) were performed at the B3LYP/6-311G(d) and BMK/6-311G(d) levels. Both reactive channels observed in the experiment were predicted by these calculations. In the isotope exchange reaction, the experimental center-of-mass (c.m.) angular distribution, T(θ(c.m.)), of the (16)O(12)C(18)O products peaked along the initial CO(2) direction (backward relative to the direction of the reagent O atoms), with a smaller isotropic component. The product translational energy distribution, P(E(T)), had a relatively low average of = 35 kcal mol(-1), indicating that the (16)O(12)C(18)O products were formed with substantial internal energy. The QCT calculations give c.m. P(E(T)) and T(θ(c.m.)) distributions and a relative product yield that agree qualitatively with the experimental results, and the trajectories indicate that exchange occurs through a short-lived CO(3)* intermediate. A low yield for the abstraction reaction was seen in both the experiment and the theory. Experimentally, a fast and weak (16)O(18)O product signal from an abstraction reaction was observed, which could only be detected in the forward direction. A small number of QCT trajectories leading to abstraction were observed to occur primarily via a transient CO(3) intermediate, albeit only at high collision energies (149 kcal mol(-1)). The oxygen isotope exchange mechanism for CO(2) in collisions with ground state O atoms is a newly discovered pathway through which oxygen isotopes may be cycled in the upper atmosphere, where O((3)P) atoms with hyperthermal translational energies can be generated by photodissociation of O(3) and O(2).  相似文献   

13.
We present results of time-dependent quantum mechanics (TDQM) and quasiclassical trajectory (QCT) studies of the excitation function for O(3P) + H2(v = 0-3,j = 0) --> OH + H from threshold to 30 kcal/mol collision energy using benchmark potential energy surfaces [Rogers et al., J. Phys. Chem. A 104, 2308 (2000)]. For H2(v = 0) there is excellent agreement between quantum and classical results. The TDQM results show that the reactive threshold drops from 10 kcal/mol for v = 0 to 6 for v = 1, 5 for v = 2 and 4 for v = 3, suggesting a much slower increase in rate constant with vibrational excitation above v = 1 than below. For H2(v > 0), the classical results are larger than the quantum results by a factor approximately 2 near threshold, but the agreement monotonically improves until they are within approximately 10% near 30 kcal/mol collision energy. We believe these differences arise from stronger vibrational adiabaticity in the quantum dynamics, an effect examined before for this system at lower energies. We have also computed QCT OH(v',j') state-resolved cross sections and angular distributions. The QCT state-resolved OH(v') cross sections peak at the same vibrational quantum number as the H2 reagent. The OH rotational distributions are also quite hot and tend to cluster around high rotational quantum numbers. However, the dynamics seem to dictate a cutoff in the energy going into OH rotation indicating an angular momentum constraint. The state-resolved OH distributions were fit to probability functions based on conventional information theory extended to include an energy gap law for product vibrations.  相似文献   

14.
We present a global full dimensional potential energy surface (PES) for the Cl + O(3)→ ClO + O(2) reaction, which is an elementary step in a catalytic cycle that leads to the destruction of ozone in the stratosphere. The PES is constructed by interpolation of quantum chemistry data using the method developed by Collins and co-workers. Ab initio data points (energy, gradients and Hessian matrix elements) have been calculated at the UQCISD/aug-cc-pVDZ (unrestricted quadratic configuration interaction with single and double excitations) level of theory. The ab initio calculations predict a markedly non-coplanar (dihedral angle of 80°) transition state for the reaction, located very early in the reactant valley and slightly below the energy of the reactants as long as the spin-orbit splitting is neglected. Quasiclassical trajectory (QCT) calculations have been carried out at several collision energies to investigate the reaction dynamics. The QCT excitation function shows no threshold, displays a minimum at a collision energy of 2.5 kcal mol(-1), and then increases monotonically at larger collision energies. This behaviour is consistent with a barrierless reaction dominated by an oxygen-abstraction mechanism. The calculated product vibrational distributions (strongly inverted for ClO) and rate constants are compared with experimental determinations. Differential cross sections (DCS) summed over all final states are found to be in fairly good agreement with those derived from crossed molecular beam experiments.  相似文献   

15.
Direct-dynamics canonical variational transition-state theory (CVT) and quasi-classical trajectory (QCT) calculations have been performed to study the dynamics of the initiation steps in the methanol combustion at high oxygen concentration. The initiation steps in combustion of methanol is hydrogen abstraction from carbon or oxygen in methanol to produce hydroxymethyl radical (CH2OH) or methoxy radical (CH3O), respectively, and hydroperoxyl radical (HO2). A new analytical potential energy function driven from our DFT calculations is constructed to study the dynamics of the title reactions. Reactive cross sections and reaction probabilities at various relative translational energies and initial vibrational and rotational reactant excitation were obtained to calculate the rate constants. The calculated rate constants from CVT and QCT calculations are compared.  相似文献   

16.
Time-dependent wave packet calculations were carried out to study the exchange and abstraction processes in the title reaction on the Kurosaki-Takayanagi potential energy surface (Kurosaki, Y.; Takayanagi, T. J. Chem. Phys. 2003, 119, 7838). Total reaction probabilities and integral cross sections were calculated for the reactant HBr initially in the ground state, first rotationally excited state, and first vibrationally excited state for both the exchange and abstraction reactions. At low collision energy, only the abstraction reaction occurs because of its low barrier height. Once the collision energy exceeds the barrier height of the exchange reaction, the exchange process quickly becomes the dominant process presumably due to its larger acceptance cone. It is found that initial vibrational excitation of HBr enhances both processes, while initial rotational excitation of HBr from j(0) = 0 to 1 has essentially no effect on both processes. For the abstraction reaction, the theoretical cross section at E(c) = 1.6 eV is 1.06 A(2), which is smaller than the experimental result of 3 +/- 1 A(2) by a factor of 2-3. On the other hand, the theoretical rate constant is larger than the experimental results by about a factor of 2 in the temperature region between 220 and 550 K. It is also found that the present quantum rate constant is larger than the TST result by a factor of 2 at 200 K. However, the agreement between the present quantum rate constant and the TST result improves as the temperature increases.  相似文献   

17.
To analyze the F + CD4 gas-phase abstraction reaction, an exhaustive state-to-state dynamics study was performed. Quasi-classical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories, were used on an analytical potential energy surface (PES-2006) recently developed by our group for collision energies in the range 0.3-6.0 kcal mol-1. While the CD3 coproduct appears vibrationally and rotationally cold, in agreement with experiment, most of the available energy appears as FD(nu') product vibrational energy, peaking at nu' = 3, one unit colder than experiment. The excitation function reproduces experiment, with the maximum contribution from the most populated FD(nu' = 3) level. The state-specific scattering distributions at different collision energies also reproduce the experimental behavior, with a clear propensity toward forward scattering, this tendency increasing with the energy. These dynamics results show the capacity of the PES-2006 surface to correctly describe the title reaction.  相似文献   

18.
An exhaustive dynamics study was performed at two collision energies, 1.52 and 2.20 eV, analyzing the effects of the asymmetric (nu3) stretch mode excitation in the reactivity and dynamics of the gas-phase H + CH4 reaction. Quasi-classical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories, were performed on an analytical potential energy surface previously developed by our group. First, strong coupling between different vibrational modes in the entry channel was observed, indicating that energy can flow between these modes, and therefore that they do not preserve their adiabatic character along the reaction path; i.e., the reaction is nonadiabatic. Second, we found that the reactant vibrational excitation has a significant influence on the vibrational and rotational product distributions. With respect to the vibrational distribution, our results confirm the purely qualitative experimental evidence, although the theoretical results presented here are also quantitative. The rotational distributions are predictive, because no experimental data have been reported. Third, with respect to the reactivity, we found that the nu3 mode excitation by one quantum is more reactive than the ground state by a factor of about 2, independently of the collision energy, and in agreement with the experimental measurement of 3.0 +/- 1.5. Fourth, the state-to-state angular distributions of the products reproduce the experimental behavior at 1.52 eV, where the CH3 products scatter sideways and backward. At 2.20 eV this experimental information is not available, and therefore the results reported here are again predictive. The satisfactory reproduction of a great variety of experimental data by the present QCT study lends confidence to the potential energy surface constructed by our group and to those results whose accuracy cannot be checked by comparison with experiment.  相似文献   

19.
This work presents a new ground state potential energy surface (PES) for CH. The potential is tested using quasi classical trajectory (QCT) and quantum reactive scattering methods for the H + CH(+) reaction. Cross sections and rate coefficients for all reaction channels up to 300 K are calculated. The abstraction rate coefficients follow the expected slightly decreasing behaviour above 90 K, but have a positive gradient with lower temperatures. The inelastic collision and exchange reaction rate constants are increasing monotonically with temperature. The rate coefficients of the exchange reaction differ significantly between QCT and quantum reactive scattering, due to intrinsic shortcomings of the QCT final state distributions.  相似文献   

20.
Time-independent quantum mechanical (QM) and quasiclassical trajectory (QCT) scattering calculations have been carried out for the C(1D) + H2 --> CH + H reaction at a collision energy of 80 meV on a newly developed ab initio potential energy surface [B. Bussery-Honvault et al., Phys. Chem. Chem. Phys. 7, 1476 (2005)] of 1 1A" symmetry, corresponding to the second singlet state 1 1B1 of CH2. A general good agreement has been found between the QM and QCT rotational distributions and differential cross sections (DCSs). In both cases, DCSs are strongly peaked in the forward direction with a small contribution in the backward direction in contrast with those obtained on the 1 1A' surface, which are nearly symmetric. Rotational distributions obtained on the 1 1A" surface are somewhat colder than those calculated on the 1 1A' surface. The specific dynamics and the contribution of the 1 1A" surface to the overall reactivity of this system are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号