首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The exact three-dimensional nonadiabatic quantum dynamics calculations were carried out for the title reaction by a time-dependent wave packet approach based on a newly constructed diabatic potential energy surface (Kamisaka et al. J. Chem. Phys. 2002, 116, 654). Three processes including those of reactive charge transfer, nonreactive charge transfer, and reactive noncharge transfer were investigated to determine the initial state-resolved probabilities and reactive cross sections. The results show that a large number of resonances can be observed in the calculated probabilities due to the deep well on adiabatic ground surface and the dominant process is the reactive noncharge-transfer process. Some interesting dynamical features such as v-dependent and j-dependent behaviors of the probabilities are also revealed. In addition, a good agreement has been achieved in the comparison between the calculated quantum cross sections from the ground rovibrational initial state and the experimental measurement data.  相似文献   

2.
The Ne + H2+-->NeH+ + H proton transfer reaction was studied using the time dependent real wave packet quantum dynamics method at the helicity decoupling level, considering the H2+ molecular ion in the (v=0-4, j=0) vibrorotational states and a wide collision energy interval. The calculated reaction probabilities and reaction cross sections were in a rather good agreement with reanalyzed previous exact quantum dynamics results, where a much smaller collision energy interval was considered. Also, a quite good agreement with experimental data was found. These results suggested the adequacy of the approach used here to describe this and related systems.  相似文献   

3.
4.
A thorough theoretical investigation of the reactions between S(1D) and various hydrogen isotopomers (H2, D2, and HD) has been carried out using a recent ab initio potential energy surface. State-resolved integral and differential cross sections, thermal rate constants, and their dependence on energy or temperature were obtained from quantum mechanical capture probabilities within a statistical model. For comparison, the J=0 reaction probabilities were also computed using an exact wave packet method. The statistical results are in excellent agreement with available exact differential and integral cross sections. The comparison with experimental results shows that the agreement is reasonably good in general, but some significant differences exist, particularly for the SD/SH branching ratio in the S(1D)+HD reaction.  相似文献   

5.
The H+ +D2(v=0,j=0)-->HD+D + reaction has been theoretically investigated by means of a time independent exact quantum mechanical approach, a quantum wave packet calculation within an adiabatic centrifugal sudden approximation, a statistical quantum model, and a quasiclassical trajectory calculation. Besides reaction probabilities as a function of collision energy at different values of the total angular momentum, J, special emphasis has been made at two specific collision energies, 0.1 and 0.524 eV. The occurrence of distinctive dynamical behavior at these two energies is analyzed in some detail. An extensive comparison with previous experimental measurements on the Rydberg H atom with D2 molecules has been carried out at the higher collision energy. In particular, the present theoretical results have been employed to perform simulations of the experimental kinetic energy spectra.  相似文献   

6.
A theoretical investigation on the nonadiabatic processes of the D(+) + H(2) reaction system has been carried out by means of exact three-dimensional nonadiabatic time-dependent wave packet calculations with an extended split operator scheme (XSOS). The diabatic potential energy surface newly constructed by Kamisaka et al. (J. Chem. Phys. 2002, 116, 654) was employed in the calculations. This study provided quantum cross sections for three competing channels of the reactive charge transfer, the nonreactive charge transfer, and the reactive noncharge transfer, which contrasted markedly to many previous quantum theoretical reports on the (DH(2))(+) system restricted to the total angular momentum J = 0. These quantum theoretical cross sections derived from the ground rovibrational state of H(2) show wiggling structures and an increasing trend for both the reactive charge transfer and the nonreactive charge transfer but a decreasing trend for the reactive noncharge transfer throughout the investigated collision energy range 1.7-2.5 eV. The results also show that the channel of the reactive noncharge transfer with the largest cross section is the dominant one. A further investigation of the v-dependent behavior of the probabilities for the three channels revealed an interesting dominant trend for the reactive charge transfer and the nonreactive charge transfer at vibrational excitation v = 4 of H(2). In addition, the comparison between the centrifugal sudden (CS) and exact calculations showed the importance of the Coriolis coupling for the reactive system. The computed quantum cross sections are also compared with the experimental measurement results.  相似文献   

7.
A theoretical investigation on the nonadiabatic processes of the full three-dimensional D(+)+H(2) and H(+)+D(2) reaction systems has been performed by using trajectory surface hopping (TSH) method based on the Zhu-Nakamura (ZN) theory. This ZN-TSH method refers to not only classically allowed hops but also classically forbidden hops. The potential energy surface constructed by Kamisaka et al. is employed in the calculation. A new iterative method is proposed to yield the two-dimensional seam surface from the topography of the adiabatic potential surfaces, in which the inconvenience of directly solving the first-order partial differential equation is avoided. The cross sections of these two systems are calculated for three competing channels of the reactive charge transfer, the nonreactive charge transfer, and the reactive noncharge transfer, for ground rovibrational state of H(2) or D(2). Also, this study provides reaction probabilities of these three processes for the total angular momentum J=0 and ground initial vibrational state of H(2) or D(2). The calculated results from ZN-TSH method are in good agreement with the exact quantum calculations and the experimental measurements.  相似文献   

8.
9.
The possible existence of a complex-forming pathway for the H+O(2) reaction has been investigated by means of both quantum mechanical and statistical techniques. Reaction probabilities, integral cross sections, and differential cross sections have been obtained with a statistical quantum method and the mean potential phase space theory. The statistical predictions are compared to exact results calculated by means of time dependent wave packet methods and a previously reported time independent exact quantum mechanical approach using the double many-body expansion (DMBE IV) potential energy surface (PES) [Pastrana et al., J. Phys. Chem. 94, 8073 (1990)] and the recently developed surface (denoted XXZLG) by Xu et al. [J. Chem. Phys. 122, 244305 (2005)]. The statistical approaches are found to reproduce only some of the exact total reaction probabilities for low total angular momenta obtained with the DMBE IV PES and some of the cross sections calculated at energy values close to the reaction threshold for the XXZLG surface. Serious discrepancies with the exact integral cross sections at higher energy put into question the possible statistical nature of the title reaction. However, at a collision energy of 1.6 eV, statistical rotationally resolved cross sections managed to reproduce the experimental cross sections for the H+O(2)(v=0,j=1)-->OH(v(')=1,j('))+O process reasonably well.  相似文献   

10.
Using an exact Chebyshev wave packet method, initial state-specified (upsilon(i)=0, j(i)=0,2) integral cross-sections and rate constants are obtained for the title reaction on the latest ab initio potential energy surface. Reaction probabilities up to J=29 are dependent on the reactant rotation and show mild oscillations superimposed on a broad background. Due to a barrier in the entrance channel, the cross sections increase with energy with clear thresholds and the rate constants vary with temperature in the Arrhenius form. The calculated canonical rate constant is in good agreement with the experimental measurements. Our results also indicate that the quasiclassical trajectory method underestimates the rate due to the neglect of tunneling, while the quantum statistical approach overestimates because of the short lifetime of the reaction intermediate.  相似文献   

11.
This work presents results of quantum mechanical calculations of reaction probabilities for the ion-neutral molecule collisions H- + D2 <--> HD + D-. Time-dependent wave packet propagations for total angular momentum J not equal to 0, including the full Coriolis coupling, are performed. The calculated state-to-state reaction probabilities using product Jacobi coordinates are compared with energy-resolved reaction probabilities calculated with the flux-operator using reactant Jacobi coordinates and with time-independent calculations. Differences between nearly converged integral cross sections and those using the J-shifting method and centrifugal sudden approximation and comparison with experimental results will be presented.  相似文献   

12.
The H + F2 → HF + F reaction on ground state potential energy surface is investigated using the quantum mechanical real wave packet and Flux analysis method based on centrifugal sudden approximation. The initial state selected reaction probabilities for total angular momentum J = 0 have been calculated by both methods while the probabilities for J > 0 have been calculated by Flux analysis method. The initial state selected reaction probabilities, integral cross sections and rate coefficients have been calculated for a broad range of collision energy. The results show a large rotational enhancement of the reaction probability. Some resonances were seen in the state‐to‐state reaction probabilities while state‐to‐all reaction probabilities and the reaction cross section do not manifest any oscillations and the initial state selected reaction rate constants are sensitive to the temperature. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

13.
The adiabatic capture centrifugal sudden approximation (ACCSA) has been applied to the ground state reaction N+NH-->N2+H over the temperature range 2-300 K using an existent potential energy surface. The resultant thermal rate constants are in agreement with available rate constants from quasi-classical trajectory calculations but are significantly larger than the available experimentally derived rate. The calculated rate constants monotonically increase with increasing temperature but could only be approximately described with a simple Arrhenius-like form. Subtle quantum effects are evident in the initial rotational state resolved cross sections and rate constants.  相似文献   

14.
We present exact and estimated quantum differential and integral cross sections as well as product state distributions for the title reaction. We employ a time-dependent wavepacket method including all Coriolis couplings and also an adapted code where the helicity quantum number and with this the Coriolis couplings have been truncated. Results from helicity truncated as well as helicity conserving (HC) calculation are presented. The HC calculations fail to reproduce the exact results due to the influence of the centrifugal barrier. While the truncated calculation overestimate the exact integral cross sections they reproduce the features of the integral cross section very well. We also find that the product rotational state distributions are well reproduced if the maximum helicity state is chosen carefully. The helicity truncated calculations fail to give a good approximation of differential cross sections.  相似文献   

15.
We present an exact quantum dynamical study and quasi-classical trajectory (QCT) calculations for the exchange and abstraction processes for the H + HS reaction. These calculations were based on a newly constructed high-quality potential energy surface for the lowest triplet state of H(2)S ((3)A"). The ab initio single-point energies were computed using complete active space self-consistent field and multi-reference configuration interaction method with a basis set of aug-cc-pV5Z. The time-dependent wave packet (TDWP) method was used to calculate the total reaction probabilities and integral cross sections over the collision energy (E(col)) range of 0.0-2.0 eV for the reactant HS initially at the ground state and the first vibrationally excited state. It was found that the initial vibrational excitation of HS enhances both abstraction and exchange processes. In addition, a good agreement is found between QCT and TDWP reaction probabilities at the total momentum J = 0 as a function of collision energy for the H + HS (v = 0, j = 0) reaction.  相似文献   

16.
We present the Born-Oppenheimer (BO) and Renner-Teller (RT) quantum dynamics of the reaction (14)N((2)D)+(1)H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-))+H((2)S), considering the NH(2) electronic states X (2)B(1) and A (2)A(1). These states correlate to the same (2)Pi(u) linear species, are coupled by RT nonadiabatic effects, and give NH(X (3)Sigma(-))+H and NH(a (1)Delta)+H, respectively. We develop the Hamiltonian matrix elements in the R embedding of the Jacobi coordinates and in the adiabatic electronic representation, using the permutation-inversion symmetry, and taking into account the nuclear-spin statistics. Collision observables are calculated via the real wave-packet (WP) and flux methods, using the potential-energy surfaces of Santoro et al. [J. Phys. Chem. A 106, 8276 (2002)]. WP snapshots show that the reaction proceeds via an insertion mechanism, and that the RT-WP avoids the A (2)A(1) potential barrier, jumping from the excited to the ground surface and giving mainly the NH(X (3)Sigma(-)) products. X (2)B(1) BO probabilities and cross sections show large tunnel effects and are approximately four to ten times larger than the A (2)A(1) ones. This implies a BO rate-constant ratio k(X (2)B(1))k(A (2)A(1)) approximately 10(5) at 300 K, i.e., a negligible BO formation of NH(a (1)Delta). When H(2) is rotationally excited, RT couplings reduce slightly the X (2)B(1) reaction observables, but enhance strongly the A (2)A(1) reactivity. These couplings are important at all collision energies, reduce the collision threshold, and increase remarkably reaction probabilities and cross sections. The RT k(A (2)A(1)) is thus approximately 3.3 order of magnitude larger than the BO value, and degeneracy-averaged, initial-state-resolved rate constants increase by approximately 13% and by approximately 47% at 300 and 500 K, respectively. Owing to an overestimation of the X (2)B(1) potential barrier, the calculated thermal rate is too low with respect to that observed, but we obtain a good agreement by shifting down the calculated cross section.  相似文献   

17.
The N(4S)+H2 reaction and its isotopic variants have been investigated by means of time‐dependent quantum wave packet with split operator method on the ground state potential energy surface (Zhai and Han, J. Chem. Phys. 2011, 135, 104314). The reaction probabilities, integral cross sections, branching ratio of the integral cross sections, and effect of vibrational excitation of H2, HD, and D2 diatomic molecules are presented and discussed. The results reveal that the intramolecular isotopic effect is greater than the intermolecular one, and that the vibrational excitation of the diatomic molecules can promote the progress of this reaction. In addition, a limited number of rigorous Coriolis coupling calculations of the integral cross sections of the N(4S)+H2 reaction have been carried out. Also shown is that since the Coriolis coupling plays a small part in this accurate quantum calculation, the cheaper centrifugal sudden calculations here reported are effective for this reactive system. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
The state-to-state dynamics of the H+D2 reaction is studied by the reactant-product decoupling method using the double many-body expansion potential energy surface. Two approaches are compared: one uses only the lowest adiabatic sheet while the other employs both coupled diabatic sheets. Rotational distributions for the reaction H+D2 (upsilon = 0, j = 0)-->HD(upsilon' = 3, j')+D are obtained at eight different collision energies between 1.49 and 1.85 eV; no significant difference are found between the two approaches. Initial state-selected total reaction probabilities and integral cross sections are also given for energies ranging from 0.25 up to 2.0 eV with extremely small differences being observed between the two sets of results, thus showing that the nonadiabatic effects in the title reaction are negligible at least for small energies below 2.0 eV.  相似文献   

19.
State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H(+)+H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at E(c.m.)=20 eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.  相似文献   

20.
We report a dynamics study of the reaction N((2)D) + H(2) (v=0, j=0-5) --> NH + H using the time-dependent quantum wave packet method and a recently reported single-sheeted double many-body expansion potential energy surface for NH(2)(1(2)A' ') which has been modeled from accurate ab initio multireference configuration-interaction calculations. The calculated probabilities for (v=0, j=0-5) are shown to display resonance structures, a feature also visible to some extent in the calculated total cross sections for (v=0, j=0). A comparison between the calculated centrifugal-sudden and coupled-channel reaction probabilities validate the former approximation for the title system. Rate constants calculated using a uniform J-shifting scheme and averaged over a Boltzmann distribution of rotational states are shown to be in good agreement with the available experimental values. Comparisons with other theoretical results are also made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号