首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We study scattering resonances in the F+HD-->HF+D reaction using a new method for direct evaluation of the lifetime Q-matrix [Aquilanti et al., J. Chem. Phys. 2005, 123, 054314]. We show that most of the resonances are due to van der Waals states in the entrance and exit reaction channels. The metastable states observed in the product reaction channel are assigned by calculating the energy levels and wave functions of the HF...D van der Waals complex. The behavior of resonance energies, widths, and decay branching ratios as functions of total angular momentum is analyzed. The effect of isotopic substitution on resonance energies and lifetimes is elucidated by comparison with previous results for the F+H2 reaction. It is demonstrated that HF(v'=3) products near threshold are formed by decay of the narrow resonances supported by van der Waals wells in the exit channel. State-to-state differential cross sections in the HF(v'=3) channel exhibit characteristic forward-backward peaks due to the formation of a long-lived metastable complex. The role of the exit-channel resonances in the interpretation of molecular beam experiments is discussed.  相似文献   

2.
Quasi-classical trajectory calculations and stochastic one-dimensional chemical master equation simulation methods are used to study the dynamics of the reaction of amidogen radical [NH2(2B1)] with hydroperoxyl radical [HO2(2A″)] on the lowest singlet electronic state. The title complex reaction takes place on a multi-well multichannel potential energy surface consisting of three deep potential wells and one van der Waals complex. In quasi-classical trajectory calculations a new analytical potential energy surface based on CCSD(T)/aug-cc-pVTZ//MPW1K/6-31+G(d,p) ab initio method was driven and used to study the dynamics of the title reaction. In quasi-classical trajectory calculations, the reactive cross sections and reaction probabilities are determined for 200–2000 K relative translational energies to calculate the rate constants. The same ab initio method was used to have the necessary data for solving the one-dimensional chemical master equation to calculate the rate constants of different channels. In solving the master equation, the Lennard-Jones potential model was used to form the collision between the collider gases. The fractional populations of different intermediates and products in the early stages of the reaction were examined to determine the role of the energized intermediates and the van der Waals complex on the dynamics of the title reaction. Although the calculated total rate constants from both methods are in good agreement with the reported experimental values in the literature, the quasi-classical trajectory simulation predicts the formation of NH2O + OH as the major channel in the title reaction in accordance with the previous studies (Sumathi and Peyerimhoff, Chem. Phys. Lett., 263:742–748, 1996), while the stochastic master equation simulation predicts the formation of HNO + H2O as the major products.  相似文献   

3.
In this paper, we employ the time-dependent quantum wave packet method to study the reaction of F((2)P(3/2), (2)P(1/2)) with HD on the Alexander-Stark-Werner potential energy surface. The reaction probabilities and total integral cross sections of the spin-orbit ground and excited states for the two possible products of the system are calculated. Because the reaction channel of the excited spin-orbit state is closed at the resonance energy, the resonance feature does not appear in the reaction probabilities and cross section for the F((2)P(1/2))+HD(v=j=0)-->HF+D reaction, in contrast with that found for the ground spin--orbit state. We also compare the average cross sections of the two possible products with the experimental measurement. The resonance peak in the present average cross section for the HF+D product is slightly larger than the experimental result, but much smaller than that of the single-state calculations on the potential energy surface of Stark and Werner. It seems that the spin--orbit coupling would play a relatively important role in this reaction. Moreover, the isotope effects of the ground and excited spin--orbit states and the reactivity of the two product channels from the excited spin--orbit state are presented.  相似文献   

4.
It is shown that van der Waals interaction potential plays a crucial role in chemical reactions at low temperatures. By taking the Cl+HD reaction as an illustrative example, we demonstrate that quasibound states of the van der Waals potential preferentially undergo chemical reaction rather than vibrational predissociation. Prereaction occurs even when the wave functions of the quasibound states peak far out into the entrance channel, outside the region of the van der Waals well. It is found that chemical reaction dominates over nonreactive vibrational quenching in collisions of vibrationally excited HD molecules with ground state chlorine atoms at ultracold temperatures.  相似文献   

5.
Vibrational relaxation of HF(v) in collisions with H atoms can occur by three pathways: inelastic scattering with and without H atom exchange, and, for v>or=3, the HF+H-->F+H2 reaction. Fully quantum, reactive scattering calculations on the Stark-Werner FH2 potential energy surface reveal narrow peaks in the energy dependence of the integral cross sections for each of these processes. By means of an adiabatic-bender analysis, we show that each of these peaks corresponds to the position of quasibound HF-H vibrational states trapped in the weak van der Waals well. The width of these resonances indicates that the lifetime of the quasibound states is up to 30 periods of the HF-H van der Waals vibration.  相似文献   

6.
Classical trajectories were calculated for the F + H2 reaction over two potential energy surfaces: (1) the well known Muckerman 5 surface (Theoretical Chemistry: Advances and Perspectives 1981 , 6A, 1) and (2) the recent surface of Stark and Werner (J. Chem. Phys. 1996 , 104, 6515). Integral cross sections, state specified cross sections, differential cross sections and product energy distributions were calculated for the two surfaces. Since the methods for calculating the trajectories and expressing differential cross sections were identical for both surfaces, the rather substantial differences in the results are clearly due to differences in the potential surfaces. The results are discussed in terms of the special characteristics of the two surfaces.  相似文献   

7.
Accurate full-dimensional quantum mechanical thermal rate constant values have been calculated for the F+H2→HF+H reaction on the Stark–Werner ab initio potential energy surface. These calculations are based on a flux correlation functions and employ a rigorous statistical sampling scheme to account for the overall rotation and the MCTDH scheme for the wave packet propagation. Our results shed some light on discrepancies on the thermal rate found for previous flux correlation based calculations with respect to accurate reactive scattering results. The resonance pattern of the all-J cumulative reaction probability is analyzed in terms of the partial wave contributions.  相似文献   

8.
A single-sheeted double many-body expansion (DMBE) potential energy surface is reported for the 1 2 A′′ state of NH2. To approximate its true multi-sheeted nature, a novel switching function that imposes the correct behavior at the H2(X 1Σ g +)+ N(2 D) and NH(X 3Σ-) + H(2 S) dissociation limits has been suggested. The new DMBE form is shown to fit with high accuracy an extensive set of new ab initio points (calculated at the multi-reference configuration interaction level using the full valence complete active space as reference and aug-cc-pVQZ and aug-cc-pV5Z basis sets) that have been semiempirically corrected at the valence regions by scaling the n-body dynamical correlation terms such as to account for the finite basis set size and truncated configuration interaction expansion. A detailed study of the N(2 D) ... H2(X 1Σ g +) van der Waals region has also been carried out. These calculations predict a nearly free rigid-rotor with two shallow van der Waals wells of C 2v and C v symmetries. Such a result contrasts with previous cc-pVTZ calculations which predict a single T-shaped van der Waals structure. Except in the vicinity of the crossing seam, which is replaced by an avoided intersection, the fit shows the correct physical behavior over the entire configurational space. The topographical features of the new DMBE potential energy surface are examined in detail and compared with those of other potential functions available in the literature. Amongst such features, we highlight the barrier for linearization (11,802 cm-1) which is found to overestimate the most recent empirical spectroscopic estimate by only 28 cm-1. Additionally, the T-shaped N(2 D) ... H2 van der Waals minimum is predicted to have a well depth of 90 cm-1, being 11 cm-1 deeper than the C v minimum. The title DMBE form is therefore recommendable for dynamics studies of both non-reactive and reactive N(2 D)+H2 collisions.  相似文献   

9.
Structure, frequencies, H–H stretching frequency shifts, interaction energy, depth of the potential well and dissociation energy of the light cation–dihydrogen (M+–H2, where M = Li, Na, B, and Al) van der Waals complexes have been studied in detail using dispersion corrected double-hybrid and gradient-corrected density functional methods in conjunction with correlation consistent valence triple-ζ basis set. Equilibrium bond distance and dissociation energy agree very well with the experimental and theoretical values wherever available. The dissociation energies of Li+–H2, B+–H2, Na+–H2, and Al+–H2 van der Waals complexes calculated from the potential energy curves at mPW2PLYP-D/cc-pVTZ level are 4.83, 3.68, 2.42, and 1.25 kcal/mol, respectively, at a distances of 1.95, 2.25, 2.40, and 2.95 Å. Among all these complexes, Al+–H2 complex is comparatively less stable, as their dissociation energy as well as depth of the potential well are smaller compared to others complexes. The symmetry-adapted perturbation theory (SAPT) has been applied to quantify the nature of interactions. The SAPT results show that the contribution of dispersion and induction are significant, although electrostatic dominates.  相似文献   

10.
We present a semiclassical complex angular momentum (CAM) analysis of the forward scattering peak which occurs at a translational collision energy around 32 meV in the quantum mechanical calculations for the F + H(2)(v = 0, j = 0) --> HF(v' = 2, j' = 0) + H reaction on the Stark-Werner potential energy surface. The semiclassical CAM theory is modified to cover the forward and backward scattering angles. The peak is shown to result from constructive/destructive interference of the two Regge states associated with two resonances, one in the transition state region and the other in the exit channel van der Waals well. In addition, we demonstrate that the oscillations in the energy dependence of the backward differential cross section are caused by the interference between the direct backward scattering and the decay of the two resonance complexes returning to the backward direction after one full rotation.  相似文献   

11.
We have performed large-scaleab initio calculations using second order Møller-Plesset perturbation theory (MP2) on the three van der Waals dimers formed from acetylene and carbon dioxide. Intermolecular geometrical parameters are reliably computed at this level of theory. Calculations of vibrational frequencies of the van der Waals modes, currently unobtainable by experimental means, give important information about the intermolecular potential and predict significant large-amplitude motion. Zero point energy contributions are shown to be vital in assessing the relative stability of conformations which are close in energy. Our studies suggest that the barrier to interconversion tunnelling in (CO2)2 is significantly smaller than previously inferred and is approximately the same as in (C2H2)2. The reason for the rigidity of (CO2)2 is the difference in monomer centre-of-mass separation between ground state and transition state. We also show that, in addition to the previously observedC 2v form, the collinear form of C2H2-CO2 is a local minimum on its potential energy surface.  相似文献   

12.
An approximate expression for the eigenvalues for van der Waals molecules by use of the Lennard-Jones (12-6) potential in the WKB approximation is presented. The expression is applied to the rare gas molecules. Ar2, Kr2, and Xe2 by fitting the potential function to the observed potential parameters. Calculated results of vibrational energy spacings for these molecules agree well with the experiment and other calculations which are based on numerical integration of the Schrödinger equation. For Xe2, the energy spacing expression is used to determine the thermodynamic functions of the van der Waals bond.  相似文献   

13.
The H+LiF(X (1)sigma(+),upsilon=0-2,j=0)-->HF(X (1)sigma(+),upsilon',j')+Li(2S) bimolecular process is investigated by means of quantum scattering calculations on the chemically accurate X 2A' LiHF potential energy surface of Aguado et al. [A. Aguado, M. Paniagua, C. Sanz, and J. Roncero, J. Chem. Phys. 119, 10088 (2003)]. Calculations have been performed for zero total angular momentum for translational energies from 10(-7) to 10(-1) eV. Initial-state selected reaction probabilities and cross sections are characterized by resonances originating from the decay of metastable states of the H...F-Li and Li...F-H van der Waals complexes. Extensive assignment of the resonances has been carried out by performing quasibound states calculations in the entrance and exit channel wells. Chemical reactivity is found to be significantly enhanced by vibrational excitation at low temperatures, although reactivity appears much less favorable than nonreactive processes due to the inefficient tunneling of the relatively heavy fluorine atom strongly bound in van der Waals complexes.  相似文献   

14.
《Chemical physics》2005,308(3):201-210
Dynamical and kinetic properties of the OH + H2(D2,HD) reaction have been investigated in detail by carrying out extended quasiclassical trajectory calculations on the most recently proposed potential energy surface. Computed values of the reactive properties of H2, D2 and HD colliding with OH are compared with measured data and with results obtained on other potential energy surfaces. In most cases the new surface provides excellent estimates of the measured quantities. To better evaluate the accuracy of the proposed surface and the implications of some assumptions made when performing the calculations, the comparison has been extended to available quantum results.  相似文献   

15.
Unrestricted Hartree-Fock calculations with large basis sets, including d-functions, and the estimation of the correlation energy, show that the potential energy surface for the Li-CO2 complex is built from the crossing of two states, each of them corresponding to a different electron arrangement. One has a strong ionic character and the other is of van der Waals type. Each portion of the energy surface presents a minimum, which is stable in respect to the dissociation limit.  相似文献   

16.
Isotope effects are important in the making and breaking of chemical bonds in chemical reactivity. Here we report on a new discovery, that isotopic substitution can fundamentally alter the nature of chemical bonding. This is established by systematic, rigorous quantum chemistry calculations of the isotopomers BrLBr, where L is an isotope of hydrogen. All the heavier isotopomers of BrHBr, BrDBr, BrTBr, and Br4HBr, the latter indicating the muonic He atom, the heaviest isotope of H, can only be stabilized as van der Waals bound states. In contrast, the lightest isotopomer, BrMuBr, with Mu the muonium atom, alone exhibits vibrational bonding, in accord with its possible observation in a recent experiment on the Mu+Br2 reaction. Accordingly, BrMuBr is stabilized at the saddle point of the potential energy surface due to a net decrease in vibrational zero point energy that overcompensates the increase in potential energy.  相似文献   

17.
We present a new parametrization (based on ab initio calculations) of the bending potentials for the two lowest potential energy surfaces of the reaction O(3P) + H2, and we use it for rate constant calculations by variational transition-state theory with multidimensional semiclassical tunneling corrections. We present results for the temperature range 250–2400 K for both the rate constants and the intermolecular kinetic isotope effects for the reactions of O(3P) with D2 and HD. In general, the calculated rate constants for the thermal reactions are in excellent agreement with available experiments. We also calculate the enhancement effect for exciting H2 to the first excited vibrational state. The calculations also provide information on which aspects of the potential energy surfaces are important for determining the predicted rate constants.  相似文献   

18.
《Chemical physics》2005,308(3):277-284
The ground state potential energy surface for He–F2 has been generated using the coupled-cluster singles and doubles excitation approach with perturbative treatment of triple excitations [CCSD(T)] and multi-reference configuration interaction (MRCI) methodologies, with augmented correlation consistent quadruple zeta basis set and diffused functions. Both the CCSD(T) and MRCI surfaces are compared and the results analyzed. The CCSD(T) surface exhibits van der Waals minima at different distances for different orientations of He approaching F2 and is adequate to describe accurately only in the region around the equilibrium bond distance of F2. The MRCI surface, on the other hand, yields reliable results for a wider range of F–F bond distances leading to the correct asymptote. Davidson correction to the MRCI surface makes it purely repulsive over the regions investigated.  相似文献   

19.
An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H2, CO2, C2H4, CH4, N2, O2) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
We report an analytical ab initio three degrees of freedom (3D) spin-orbit-correction surface for the entrance channel of the F + methane reaction obtained by fitting the differences between the spin-orbit (SO) and non-relativistic electronic ground state energies computed at the MRCI+Q/aug-cc-pVTZ level of theory. The 3D model surface is given in terms of the distance, R(C-F), and relative orientation, Euler angles ? and θ, of the reactants treating CH(4) as a rigid rotor. The full-dimensional (12D) "hybrid" SO-corrected potential energy surface (PES) is obtained from the 3D SO-correction surface and a 12D non-SO PES. The SO interaction has a significant effect in the entrance-channel van der Waals region, whereas the effect on the energy at the early saddle point is only ~5% of that at the reactant asymptote; thus, the SO correction increases the barrier height by ~122 cm(-1). The 12D quasiclassical trajectory calculations for the F + CH(4) and F + CHD(3) reactions show that the SO effects decrease the cross sections by a factor of 2-4 at low collision energies and the effects are less significant as the collision energy increases. The inclusion of the SO correction in the PES does not change the product state distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号