首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
The dynamics of the H(2S) + FO(2Π) → OH(2Π) + F(2P) reaction on the adiabatic potential energy surface of the 13A′ and 13A″ states is investigated. The initial state selected reaction probabilities for total angular momentum J = 0 have been calculated by using the quantum mechanical real wave packet method. The integral cross sections and initial state selected reaction rate constants have been obtained from the corresponding J = 0 reaction probabilities by means of the simple J‐Shifting technique. The initial state‐selected reaction probabilities and reaction cross section do not manifest any sharp oscillations and the initial state selected reaction rate constants are sensitive to the temperature. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

2.
N(2D) + H2NH + H reaction at zero total angular momentum is studied by using a time dependent quantum wave packet method. State‐to‐state and state‐to‐all reactive scattering probabilities for a broad range of energy are calculated. The probabilities show many sharp peaks that ascribed to reactive scattering resonances. The probabilities for J > 0 are estimated by using the J‐shifting method. The integral cross sections and thermal rate constants are then calculated. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

3.
The time‐dependent real wave packet method has been used to study the C(1D) + HD reaction. The state‐to‐state and state‐to‐all reactive scattering probabilities for a broad range of energies are calculated at zero total angular momentum. The probabilities for J > 0 are estimated from accurately computed J = 0 probabilities by using the J‐shifting approximation. The integral cross sections for a large energy range, and thermal rate constants are calculated. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

4.
The H+ + LiH → Li + H reactive scattering has been studied using a quantum real wave packet method. The state‐to‐state and state‐to‐all reaction probabilities for the entitled collision have been calculated at zero total angular momentum. The probabilities for J > 0 are estimated from the J = 0 results by using J‐shifting approximation based on the Capture model. The integral cross sections and thermal rate constants are then calculated. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

5.
Quantum mechanical wave packet calculations are carried out for the H((2)S) + FO((2)II) --> OH((2)II) + F((2)P) reaction on the adiabatic potential energy surface of the ground (3)A' triplet state. The state-to-state and state-to-all reaction probabilities for total angular momentum J = 0 have been calculated. The probabilities for J > 0 have been estimated from the J = 0 results by using J-shifting approximation based on a capture model. Then, the integral cross sections and initial state-selected rate constants have been calculated. The calculations show that the initial state-selected reaction probabilities are dominated by many sharp peaks. The reaction cross section does not manifest any sharp oscillations and the initial state-selected rate constants are sensitive to the temperature.  相似文献   

6.
LCAC‐SW (linear combination of arrangement channel‐scattering wavefunction) method was used to calculate collinear state‐to‐state reaction probabilities for the reaction F + H2(v = 0) → HF(v′) + H on the 6SEC potential energy surface. The results show that reaction probabilities P02 and P03 [i. e., v′ = 2,3 for reaction F + H2 (v = 0) + HF(v′) + H] are primary, the population of product vibrational states is inverse and the reaction probabilities are oscillatory with collision energies, i.e., there is energy resonance in this reaction, which agrees with a new experiment.  相似文献   

7.
We present in this paper a time-dependent quantum wave packet calculation of the initial state selected reaction probability for H + Cl2 based on the GHNS potential energy surface with total angular momentumJ = 0. The effects of the translational, vibrational and rotational excitation of Cl2 on the reaction probability have been investigated. In a broad region of the translational energy, the rotational excitation enhances the reaction probability while the vibrational excitation depresses the reaction probability. The theoretical results agree well with the fact that it is an early down-hill reaction.  相似文献   

8.
The reaction H + ClCH3 has theoretically studied in a LEPS potential energy surface with a single-particle approximation for the methyl group. The LEPS adjustable parameters were selected to reach a good agreement with experimental values of activation energy and exothermicity. A wide set of quasi-classical trajectories for that system has been calculated within a energy range covering the significative values of relative velocities at temperatures between 300 and 1000 K. Calculated reactive cross sections increase with translational energy and with the initial vibrational level, but they are not influenced by rotational excitation of the reactants. Microscopic and total reaction rate constants have been obtained within the temperature range and agree quite well with available experimental results. Final energy distribution shows that most of the exoergicity is consumed in increasing the relative velocity of the products, while HCl molecules remain in their vibrational ground state.  相似文献   

9.
The low‐energy single electron capture cross‐sections by C6+ from H atoms have been evaluated employing the semiclassical, impact parameter, close‐coupling method based on a molecular expansion augmented with the plane‐wave translation factor. Using the method of Bates and Carson, the exact Born–Oppenheimer eigenfunctions and eigenvalues are calculated. Eight‐state coupled equations are solved to obtain transition probabilities and thereby evaluate capture cross‐sections. Our calculated capture cross‐sections agree well with other theoretical and experimental results. At these energies it is found that the capture into the n = 4 manifold of the C5+ remains the main contributor to the charge exchange process. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

10.
The quantum mechanics (QM) and quasiclassical trajectory (QCT) calculations have been carried out for the title reaction with the ground minimal allowed rotational state of CH (j = 1) on the 1 1A′ potential energy surface. For the reaction probability at total angular momentum J = 0, a similar trend of the QM and QCT calculations is observed, and the QM results are larger than the latter almost in the whole considered energy range (0.1–1.5 eV). The QCT integral cross sections are larger than the QM results with centrifugal sudden approximation, while smaller than those from QM method including Coriolis coupling for collision energies bigger than 0.25 eV. The quantum wave‐packet computations show that the Coriolis coupling effects get more and more pronounced with increasing of J. In addition to the scalar properties, the stereodynamical properties, such as the average rotational alignment factor <P2( j′?k )>, the angular distributions Pr), P(?r), Pr,?r), and the polarization‐dependent generalized differential cross sections have been explored in detail by QCT approach. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Initial state-selected time-dependent wave packet dynamics calculations have been performed for the H+NH3-->H2+NH2 reaction using a seven-dimensional model and an analytical potential energy surface based on the one developed by Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The model assumes that the two spectator NH bonds are fixed at their equilibrium values. The total reaction probabilities are calculated for the initial ground and seven excited states of NH3 with total angular momentum J=0. The converged cross sections for the reaction are also reported for these initial states. Thermal rate constants are calculated for the temperature range 200-2000 K and compared with transition state theory results and the available experimental data. The study shows that (a) the total reaction probabilities are overall very small, (b) the symmetric and asymmetric NH stretch excitations enhance the reaction significantly and almost all of the excited energy deposited was used to reduce the reaction threshold, (c) the excitation of the umbrella and bending motion have a smaller contribution to the enhancement of reactivity, (d) the main contribution to the thermal rate constants is thought to come from the ground state at low temperatures and from the stretch excited states at high temperatures, and (e) the calculated thermal rate constants are three to ten times smaller than the experimental data and transition state theory results.  相似文献   

12.
We present in this paper a time-dependent quantum wave packet calculation of the initial state selected reaction probability for H + Cl2 based on the GHNS potential energy surface with total angular momentumJ = 0. The effects of the translational, vibrational and rotational excitation of Cl2 on the reaction probability have been investigated. In a broad region of the translational energy, the rotational excitation enhances the reaction probability while the vibrational excitation depresses the reaction probability. The theoretical results agree well with the fact that it is an early down-hill reaction.  相似文献   

13.
In this theoretical work, we report quasiclassical dynamics predictions for the attack angle‐dependence exchange processes for the H + HS (v = 0, 1; j = 0) reaction by using the new triplet 3A″ and 3A′ potential energy surfaces, respectively. The calculated quasiclassical reaction probabilities of exchange reaction channel of reaction H(D)′ + H(D)S for J = 0, 10, 20, 30, 40 are in good agreement with quantum wave packet results over the collision energy range from 0.1 to 2.0 eV on 3A″ surfaces. The attack angle dependence reaction probability of the title reactions at J = 0 are calculated, respectively, on the two surfaces. The reaction probability was found to be strongly dependent on the attack angle. It may be ascribe to the significant difference of the effective potential barrier height in the two reactions. Besides, the reaction probabilities of exchange reaction channel of reaction H(D)′ + H(D)S for J = 0, 10, 20, 30, 40 are also predicted on 3A′ surfaces. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Using the reactant coordinate based time-dependent wave packet method, on the APW potential energy surface, the differential and integral cross sections of the Li+DF/HF(v=0, j=0, 1) reactions were calculated over the collision energy range from the threshold to 0.25 eV. The initial state-specified reaction rate constants of the title reaction were also calculated. The results indicate that, compared with the Li+DF reaction, the product LiF of Li+HF reaction is a little more rotationally excited but essentially similar. The initial rotational excitation from j=0 to 1 has little effect on the Li+DF reaction. However, the rotational excitation of DF does result in a little more rotationally excited product LiF. The different cross section of both reactions is forward biased in the studied collision energy range, especially at relatively high collision energy. The resonances in the Li+HF reaction may be identifiable as the oscillations in the product ro-vibrational state-resolved integral cross sections and backward scattering as a function of collusion energy. For the Li+HF reaction, the rate constant is not sensitive to the temperature and almost has no change in the temperature range considered. For the Li+DF reaction, the rate constant increase by a factor of about 10 in the temperature range of 100?300 K. Brief comparison for the total reaction probabilities and integral cross section of the Li+HF reaction has been carried out between ours and the values reported previously. The agreement is good, and the difference should come from the better convergence of our present calculations.  相似文献   

15.
The reaction D + H2 → HD + H has been investigated in two molecular beam scattering experiments. Angular and time-of-flight distributions have been measured for the initial vibrational ground state (v = 0) at a most probable collision energy of Ecm = 1.5 eV and for the first vibrational excited state (v = 1) at Ecm = 0.28 eV with the same apparatus. Results for the ground-state experiment are compared with quasiclassical trajectory calculations(QCT) on the LSTH-hypersurface transformed into the laboratory system and averaged over the apparatus distributions. The agreement isquite satisfactory. At this high collision energy the HD products are no longer scattered in a backward direction but in a wide angular region concentrated about θ = 90° in the center-of-mass system. The absolute reactive cross section has been determined and the agreement with the theoretical value from QCT calculations is within the experimental error. The high sensitivity of the experiment to different properties of the doubly differential cross section has also been demonstrated. A preliminary evaluation of the experiment with initial vibrational excitation (v = 1) shows that the HD-product molecules are preferably backward scattered and the change of internal energy is small supporting the concept of a reaction which is adiabatic with respect to the internal degrees of freedom.  相似文献   

16.
The time‐dependent wavepacket method is used to study the reaction dynamics of S(3P) + HD (v = 0, 1, 2) on the adiabatic 13A″ potential energy surface constructed by Han and coworkers [J. Chem. Phys. 2012, 136, 094308]. The reaction probabilities and integral cross sections as a function of collision energy are obtained and discussed. The results calculated by using the CC and the CS approximation have been compared, which suggests that for this direct abstraction reaction, the cheaper CS approximation calculation is valid enough in the quantum calculation. The investigation also shows that the reaction probabilities and integral cross sections tend to increase with collision energy. By analyzing the v‐dependent behavior of the integral cross sections, the significant effect of the vibrational excitation of HD is found. Also found in the calculation is a significant resonance feature in the reaction probabilities versus collision energy. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Three‐dimensional time‐dependent quantum wave packet calculations have been carried out for Br + H2 on a new global ab initio and a semi‐empirical extended London–Eyring–Polanyi–Sato potential energy surface. It is shown that on the ab initio surface, the threshold energy is much lower, and the reaction probabilities, cross sections, and rate constants are much larger. The effects of the initial rovibrational excitation have also been studied. Comparison of rate constants with experimental measurement implies that the ab initio surface is more suitable for quantum dynamic calculation. The possible reasons and mechanism for the dynamical difference on the two PES are analyzed and discussed. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

18.
The N(2D) + H2(v = 0, j = 0) reaction and its HD and D2 isotopic variants have been studied by means of quantum mechanical real wave packet and wave packet with split operator and quasiclassical trajectory methodologies on the potential energy surface of Ho et al. [J. Chem. Phys. 119 (2003) 6]. Total initial state-selected and final state-resolved reaction probabilities and product rotational distributions have been calculated for total angular momentum J = 0 in a broad range of collision energies. The real wave packet results are in very good agreement with the corresponding split operator wave packet calculations. A reasonable overall good agreement has been found between the wave packet and quasiclassical trajectory results. Integral cross-sections and thermal rate constants have been calculated from the wave packet reaction probabilities by means of standard J-shifting, refined J-shifting and uniform J-shifting methods in combination with the centrifugal sudden approximation for J > 0. Comparisons with available exact wave packet, quasiclassical trajectory and experimental results are made and discussed.  相似文献   

19.
A new global potential energy surface for the ground state of MgH2 was constructed using the permutation invariant polynomial neural network method. About 70 000 ab initio energy points were calculated via the multi‐reference configuration interaction method method with aug‐cc‐pVTZ and aug‐cc‐pVQZ basis sets, and these points were used to construct the potential energy surface (PES). To avoid basis set superposition error, the basis set was extrapolated to the complete basis set limit using the two point energy extrapolation formula. The root mean square error of the present PES is only 8.85 meV. Initial state (v = 0, j = 0) dynamics studies were performed using the time‐dependent wave packet method with a second‐order split operator for the total angular momentum J up to a value of 50. Furthermore, the reaction probability, integral cross section, and thermal rate constant are reported and compared with available theoretical studies.  相似文献   

20.
The effects of reaction barrier height and initial rotational excitation of the reactants on the overall rate of H atom exchange between atomic chlorine and HCl (v = 0) and on the 0 → 1 vibrational excitation of HCl via reactive and nonreactive collisions have been investigated using quasiclassical trajectory techniques. Two empirical LEPS potential energy surfaces were employed in the calculations having reaction barrier heights of 9.84 and 7.05 kcal mol?1. Trajectory studies of planar collisions were carried out on each surface over a range of relative translational energies with the ground-state HCI collision partner given initial rotational excitation corresponding J = 0, 3, and 7. Initial molecular rotation was found to be relatively inefficient in promoting the H atom exchange; the computed rate coefficient for H atom exchange between Cl + HCl (v = 0, J = 7) was only 4 times larger than that for CI + HCI (v = 0, J = 0). The vibrational excitation rate coefficient exhibited a stronger dependence on initial molecular rotational excitation. The observed increase in the vibrational excitation rate coefficient with increasing initial molecular rotational excitation was due primarily to nonreactive intermolecular RV energy transfer. The vibrational excitation rate coefficients increase with decreasing reaction barrier height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号